Suppr超能文献

Sn-Pb底部子电池中的晶格稳定和应变均匀化使全钙钛矿叠层太阳能电池具有稳定性。

Lattice stabilization and strain homogenization in Sn-Pb bottom subcells enable stable all-perovskite tandems solar cells.

作者信息

Bai Yang, Meng Yuanyuan, Yang Ming, Tian Ruijia, Wang Jingnan, Jiao Boxin, Pan Haibin, Gao Jiangwei, Wang Yaohua, Sun Kexuan, Zhou Shujing, Lu Xiaoyi, Song Zhenhua, Liu Chang, Ge Ziyi

机构信息

Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, China.

Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.

出版信息

Nat Commun. 2025 Aug 9;16(1):7344. doi: 10.1038/s41467-025-62661-6.

Abstract

All-perovskite tandem solar cells (PTSCs) offer a promising approach to surpass the Shockley-Queisser (SQ) limit, driven by efficiently reducing thermalization and transmission losses. However, the efficiency and stability of the narrow-bandgap (NBG) subcells, which are essential for PTSC performance, remain severely constrained by challenges such as lattice instability, strain accumulation and halide migration under illumination. This study introduces a rigid sulfonate-based molecule, sodium naphthalene-1,3,6-trisulfonate (NTS), into tin-lead (Sn-Pb) perovskites, where it strengthens the Sn-I bond through Sn-trisulfonate coordination and reduces light-induced dynamic lattice distortions via the rigid NTS backbone. These molecular interactions alleviate strain heterogeneity within the lattice and homogenize the Sn-Pb compositional gradient, thereby enhancing the structural integrity and long-term stability of Sn-Pb perovskites under operational conditions. As a result, Sn-Pb single-junction perovskite solar cells (PSCs) achieve a power conversion efficiency (PCE) of 23.2%. When integrated into a tandem configuration, the device attains an impressive PCE of 29.6% (certified PCE of 29.2%, one of the highest certified efficiencies to date), with 93.1% of the initial efficiency retained after 700 h of continuous operation. By stabilizing the lattice structure, this work lays a solid foundation for achieving both high efficiency and long-term durability in next-generation perovskite photovoltaics.

摘要

全钙钛矿串联太阳能电池(PTSCs)通过有效减少热化和传输损耗,为突破肖克利-奎塞尔(SQ)极限提供了一种有前景的方法。然而,窄带隙(NBG)子电池的效率和稳定性对PTSC性能至关重要,但仍受到诸如晶格不稳定性、应变积累和光照下卤化物迁移等挑战的严重制约。本研究将一种刚性磺酸盐基分子萘-1,3,6-三磺酸钠(NTS)引入锡铅(Sn-Pb)钙钛矿中,它通过三磺酸盐与锡的配位加强了Sn-I键,并通过刚性的NTS主链减少了光致动态晶格畸变。这些分子相互作用减轻了晶格内的应变不均匀性,并使Sn-Pb成分梯度均匀化,从而增强了Sn-Pb钙钛矿在工作条件下的结构完整性和长期稳定性。结果,Sn-Pb单结钙钛矿太阳能电池(PSC)实现了23.2%的功率转换效率(PCE)。当集成到串联配置中时,该器件的PCE达到了令人印象深刻的29.6%(认证PCE为29.2%,是迄今为止最高的认证效率之一),在连续运行700小时后仍保留了93.1%的初始效率。通过稳定晶格结构,这项工作为下一代钙钛矿光伏器件实现高效率和长期耐久性奠定了坚实基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验