Suppr超能文献

预测烟雾病术后梗死的机器学习模型的开发与验证

Development and validation of machine learning models to predict postoperative infarction in moyamoya disease.

作者信息

Fuse Yutaro, Ishii Kazuki, Kanamori Fumiaki, Oyama Shintaro, Imaizumi Takahiro, Araki Yoshio, Yokoyama Kinya, Takasu Syuntaro, Seki Yukio, Saito Ryuta

机构信息

1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi.

2Academia-Industry collaboration platform for cultivating Medical AI Leaders (AI-MAILs), Nagoya University Graduate School of Medicine, Nagoya, Aichi.

出版信息

J Neurosurg. 2024 Apr 5;141(4):927-935. doi: 10.3171/2024.1.JNS232173. Print 2024 Oct 1.

Abstract

OBJECTIVE

Cerebral infarction is a common complication in patients undergoing revascularization surgery for moyamoya disease (MMD). Although previous statistical evaluations have identified several risk factors for postoperative brain ischemia, the ability to predict its occurrence based on these limited predictors remains inadequately explored. This study aimed to assess the feasibility of machine learning algorithms for predicting cerebral infarction after revascularization surgery in patients with MMD.

METHODS

This retrospective study was conducted across two centers and harnessed data from 512 patients with MMD who had undergone revascularization surgery. The patient cohort was partitioned into internal and external datasets. Using perioperative clinical data from the internal cohort, three distinct machine learning algorithms-namely the support vector machine, random forest, and light gradient-boosting machine models-were trained and cross-validated to predict the occurrence of postoperative cerebral infarction. Predictive performance validity was subsequently assessed using an external dataset. Shapley additive explanations (SHAP) analysis was conducted to augment the prediction model's transparency and to quantify the impact of each input variable on shaping both the aggregate and individual patient predictions.

RESULTS

In the cohort of 512 patients, 33 (6.4%) experienced postrevascularization cerebral infarction. The cross-validation outcomes revealed that, among the three models, the support vector machine model achieved the largest area under the receiver operating characteristic curve (ROC-AUC) at mean ± SD 0.785 ± 0.052. Notably, during external validation, the light gradient-boosting machine model exhibited the highest accuracy at 0.903 and the largest ROC-AUC at 0.710. The top-performing prediction model utilized five input variables: postoperative serum gamma-glutamyl transpeptidase value, positive posterior cerebral artery (PCA) involvement on preoperative MRA, infarction as the rationale for surgery, presence of an infarction scar on preoperative MRI, and preoperative modified Rankin Scale score. Furthermore, the SHAP analysis identified presence of PCA involvement, infarction as the rationale for surgery, and presence of an infarction scar on preoperative MRI as positive influences on postoperative cerebral infarction.

CONCLUSIONS

This study indicates the usefulness of employing machine learning techniques with routine perioperative data to predict the occurrence of cerebral infarction after revascularization procedures in patients with MMD.

摘要

目的

脑梗死是烟雾病(MMD)患者血管重建手术常见的并发症。尽管先前的统计评估已确定了术后脑缺血的几个危险因素,但基于这些有限预测因素预测其发生的能力仍未得到充分探索。本研究旨在评估机器学习算法预测MMD患者血管重建术后脑梗死的可行性。

方法

这项回顾性研究在两个中心开展,利用了512例接受血管重建手术的MMD患者的数据。将患者队列分为内部和外部数据集。使用内部队列的围手术期临床数据,训练并交叉验证了三种不同的机器学习算法,即支持向量机、随机森林和轻梯度提升机模型,以预测术后脑梗死的发生。随后使用外部数据集评估预测性能的有效性。进行了Shapley加性解释(SHAP)分析,以提高预测模型的透明度,并量化每个输入变量对总体和个体患者预测形成的影响。

结果

在512例患者队列中,33例(6.4%)发生了血管重建术后脑梗死。交叉验证结果显示,在这三种模型中,支持向量机模型在平均±标准差为0.785±0.052时达到了最大受试者工作特征曲线下面积(ROC-AUC)。值得注意的是,在外部验证期间,轻梯度提升机模型的准确率最高,为0.903,ROC-AUC最大,为0.710。表现最佳的预测模型使用了五个输入变量:术后血清γ-谷氨酰转肽酶值、术前MRA显示大脑后动脉(PCA)阳性受累、梗死作为手术理由、术前MRI存在梗死瘢痕以及术前改良Rankin量表评分。此外,SHAP分析确定PCA受累、梗死作为手术理由以及术前MRI存在梗死瘢痕对术后脑梗死有正向影响。

结论

本研究表明,将机器学习技术与常规围手术期数据相结合,对于预测MMD患者血管重建术后脑梗死的发生是有用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验