Santana da Costa Thyerre, Delgado Gonzalo García, Braga Carolyne Brustolin, Tasic Ljubica
Institute of Chemistry, Biological Chemistry Laboratory, Universidade Estadual de Campinas, UNICAMP Campinas SP 13083-970 Brazil
RSC Adv. 2025 Mar 4;15(9):6938-6951. doi: 10.1039/d4ra07962k. eCollection 2025 Feb 26.
The biosynthesis of silver nanoparticles (AgNPs) using biological systems has emerged as a promising alternative to traditional chemical methods, providing eco-friendly solutions in nanotechnology. This study investigates the secretomes of two strains of (VR039 and 07SD) to synthesize AgNPs (AgNP@Fo VR039 and AgNP@Fo 07SD), characterized by similar sizes of 35.4 ± 12.4 nm and 28.6 ± 9.5 nm, respectively. We conducted proteomic analysis mass spectrometry on both secretomes and nanoparticles, identifying proteins involved in the biosynthesis, stabilization, and antimicrobial activity of the nanoparticles. Our results indicate notable similarities in the proteomes of both nanoparticles and their respective secretomes, correlating with similar antimicrobial efficacy against and , as demonstrated through bacterial growth inhibition assays. The presence of redox proteins, such as glyceraldehyde reductase and FAD-oxidoreductase, suggests a potential mechanism for the generation of reactive oxygen species (ROS) and oxidative stress in bacterial cells, further validated by fluorescence microscopy to differentiate viable from non-viable cells. Unlike previous studies that have focused separately on metal ion reduction or nanoparticle stabilization, our findings reveal a coordinated biosynthetic process where the same proteins mediate both functions. This overlap between the secretome and nanoparticle proteome provides new insights into fungal-mediated nanoparticle synthesis, highlighting the multifunctionality of fungal proteins in bionanotechnology. By demonstrating how secreted enzymes directly contribute to nanoparticle formation, this study paves the way for more efficient, scalable, and environmentally sustainable approaches to biogenic nanoparticle production.
利用生物系统生物合成银纳米颗粒(AgNP)已成为传统化学方法的一种有前景的替代方法,为纳米技术提供了环保解决方案。本研究调查了两种菌株(VR039和07SD)的分泌蛋白组以合成AgNP(AgNP@Fo VR039和AgNP@Fo 07SD),其特征在于尺寸分别相似,为35.4±12.4纳米和28.6±9.5纳米。我们对分泌蛋白组和纳米颗粒都进行了蛋白质组学质谱分析,鉴定了参与纳米颗粒生物合成、稳定化和抗菌活性的蛋白质。我们的结果表明,两种纳米颗粒及其各自分泌蛋白组的蛋白质组存在显著相似性,这与通过细菌生长抑制试验所证明的对两种细菌的相似抗菌效果相关。氧化还原蛋白如甘油醛还原酶和FAD氧化还原酶的存在表明了细菌细胞中产生活性氧(ROS)和氧化应激的潜在机制,荧光显微镜进一步验证了这一点,以区分活细胞和死细胞。与之前分别关注金属离子还原或纳米颗粒稳定化的研究不同,我们的发现揭示了一个协调的生物合成过程,其中相同的蛋白质介导这两种功能。分泌蛋白组和纳米颗粒蛋白质组之间的这种重叠为真菌介导的纳米颗粒合成提供了新的见解,突出了真菌蛋白在生物纳米技术中的多功能性。通过证明分泌酶如何直接促进纳米颗粒的形成,本研究为更高效、可扩展和环境可持续的生物源纳米颗粒生产方法铺平了道路。