GLUL 中频发的从头缺失突变导致谷氨酰胺合成酶稳定化,从而引发发育性和癫痫性脑病。

Clustered de novo start-loss variants in GLUL result in a developmental and epileptic encephalopathy via stabilization of glutamine synthetase.

机构信息

Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.

Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.

出版信息

Am J Hum Genet. 2024 Apr 4;111(4):729-741. doi: 10.1016/j.ajhg.2024.03.005.

Abstract

Glutamine synthetase (GS), encoded by GLUL, catalyzes the conversion of glutamate to glutamine. GS is pivotal for the generation of the neurotransmitters glutamate and gamma-aminobutyric acid and is the primary mechanism of ammonia detoxification in the brain. GS levels are regulated post-translationally by an N-terminal degron that enables the ubiquitin-mediated degradation of GS in a glutamine-induced manner. GS deficiency in humans is known to lead to neurological defects and death in infancy, yet how dysregulation of the degron-mediated control of GS levels might affect neurodevelopment is unknown. We ascertained nine individuals with severe developmental delay, seizures, and white matter abnormalities but normal plasma and cerebrospinal fluid biochemistry with de novo variants in GLUL. Seven out of nine were start-loss variants and two out of nine disrupted 5' UTR splicing resulting in splice exclusion of the initiation codon. Using transfection-based expression systems and mass spectrometry, these variants were shown to lead to translation initiation of GS from methionine 18, downstream of the N-terminal degron motif, resulting in a protein that is stable and enzymatically competent but insensitive to negative feedback by glutamine. Analysis of human single-cell transcriptomes demonstrated that GLUL is widely expressed in neuro- and glial-progenitor cells and mature astrocytes but not in post-mitotic neurons. One individual with a start-loss GLUL variant demonstrated periventricular nodular heterotopia, a neuronal migration disorder, yet overexpression of stabilized GS in mice using in utero electroporation demonstrated no migratory deficits. These findings underline the importance of tight regulation of glutamine metabolism during neurodevelopment in humans.

摘要

谷氨酰胺合成酶(GS),由 GLUL 编码,催化谷氨酸转化为谷氨酰胺。GS 对谷氨酸和γ-氨基丁酸等神经递质的生成至关重要,是大脑中氨解毒的主要机制。GS 的水平通过 N 端降解结构域进行翻译后调节,该结构域使 GS 能够以谷氨酰胺诱导的方式发生泛素介导的降解。已知人类 GS 缺乏会导致婴儿期的神经缺陷和死亡,但降解结构域介导的 GS 水平调控失调如何影响神经发育尚不清楚。我们鉴定了 9 名患有严重发育迟缓、癫痫和白质异常但血浆和脑脊液生化正常的患者,他们携带 GLUL 的新生变异。9 名患者中有 7 名是起始缺失变异,有 2 名破坏了 5'UTR 剪接,导致起始密码子的剪接排除。使用基于转染的表达系统和质谱分析,这些变异导致 GS 从 N 端降解结构域下游的甲硫氨酸 18 开始翻译,产生一种稳定且具有酶活性但对谷氨酰胺的负反馈不敏感的蛋白质。对人类单细胞转录组的分析表明,GLUL 在神经和神经胶质祖细胞以及成熟星形胶质细胞中广泛表达,但不在有丝分裂后神经元中表达。一名携带起始缺失 GLUL 变异的患者表现出脑室周围结节性异位,这是一种神经元迁移障碍,但使用体内电穿孔在小鼠中过表达稳定的 GS 并未显示出迁移缺陷。这些发现强调了人类神经发育过程中严格调控谷氨酰胺代谢的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1c4/11023914/0d7667531582/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索