Negi Shloka, Stenton Sarah L, Berger Seth I, Canigiula Paolo, McNulty Brandy, Violich Ivo, Gardner Joshua, Hillaker Todd, O'Rourke Sara M, O'Leary Melanie C, Carbonell Elizabeth, Austin-Tse Christina, Lemire Gabrielle, Serrano Jillian, Mangilog Brian, VanNoy Grace, Kolmogorov Mikhail, Vilain Eric, O'Donnell-Luria Anne, Délot Emmanuèle, Miga Karen H, Monlong Jean, Paten Benedict
UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA.
Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
Am J Hum Genet. 2025 Feb 6;112(2):428-449. doi: 10.1016/j.ajhg.2025.01.002. Epub 2025 Jan 24.
More than 50% of families with suspected rare monogenic diseases remain unsolved after whole-genome analysis by short-read sequencing (SRS). Long-read sequencing (LRS) could help bridge this diagnostic gap by capturing variants inaccessible to SRS, facilitating long-range mapping and phasing and providing haplotype-resolved methylation profiling. To evaluate LRS's additional diagnostic yield, we sequenced a rare-disease cohort of 98 samples from 41 families, using nanopore sequencing, achieving per sample ∼36× average coverage and 32-kb read N50 from a single flow cell. Our Napu pipeline generated assemblies, phased variants, and methylation calls. LRS covered, on average, coding exons in ∼280 genes and ∼5 known Mendelian disease-associated genes that were not covered by SRS. In comparison to SRS, LRS detected additional rare, functionally annotated variants, including structural variants (SVs) and tandem repeats, and completely phased 87% of protein-coding genes. LRS detected additional de novo variants and could be used to distinguish postzygotic mosaic variants from prezygotic de novos. Diagnostic variants were established by LRS in 11 probands, with diverse underlying genetic causes including de novo and compound heterozygous variants, large-scale SVs, and epigenetic modifications. Our study demonstrates LRS's potential to enhance diagnostic yield for rare monogenic diseases, implying utility in future clinical genomics workflows.
通过短读长测序(SRS)进行全基因组分析后,超过50%疑似患有罕见单基因疾病的家庭仍未得到诊断。长读长测序(LRS)可以通过捕获SRS无法检测到的变异,促进长距离映射和定相,并提供单倍型解析的甲基化图谱,从而帮助弥合这一诊断差距。为了评估LRS的额外诊断价值,我们使用纳米孔测序对来自41个家庭的98个样本组成的罕见病队列进行了测序,从单个流动槽中实现了每个样本约36倍的平均覆盖度和32 kb的读长N50。我们的Napu流程生成了组装序列、定相变异和甲基化调用结果。LRS平均覆盖了约280个基因的编码外显子和约5个已知的孟德尔疾病相关基因,而这些基因未被SRS覆盖。与SRS相比,LRS检测到了更多罕见的、具有功能注释的变异,包括结构变异(SVs)和串联重复,并对87%的蛋白质编码基因进行了完全定相。LRS检测到了额外的新生变异,并可用于区分合子后嵌合变异和合子前新生变异。LRS在11名先证者中确定了诊断变异,其潜在的遗传原因多种多样,包括新生变异和复合杂合变异、大规模SVs以及表观遗传修饰。我们的研究证明了LRS在提高罕见单基因疾病诊断价值方面的潜力,这意味着它在未来的临床基因组学工作流程中具有实用性。