Suppr超能文献

碱基编辑人类类器官中的囊发生遗传学揭示了多囊肾病的治疗策略。

Genetics of cystogenesis in base-edited human organoids reveal therapeutic strategies for polycystic kidney disease.

机构信息

Division of Nephrology, Department of Medicine, Institute for Stem Cell and Regenerative Medicine, and Kidney Research Institute, University of Washington, Seattle, WA 98109, USA.

Eloxx Pharmaceuticals, Inc., 950 Winter Street, Waltham, MA 02451, USA.

出版信息

Cell Stem Cell. 2024 Apr 4;31(4):537-553.e5. doi: 10.1016/j.stem.2024.03.005.

Abstract

In polycystic kidney disease (PKD), microscopic tubules expand into macroscopic cysts. Among the world's most common genetic disorders, PKD is inherited via heterozygous loss-of-function mutations but is theorized to require additional loss of function. To test this, we establish human pluripotent stem cells in allelic series representing four common nonsense mutations, using CRISPR base editing. When differentiated into kidney organoids, homozygous mutants spontaneously form cysts, whereas heterozygous mutants (original or base corrected) express no phenotype. Using these, we identify eukaryotic ribosomal selective glycosides (ERSGs) as PKD therapeutics enabling ribosomal readthrough of these same nonsense mutations. Two different ERSGs not only prevent cyst initiation but also limit growth of pre-formed cysts by partially restoring polycystin expression. Furthermore, glycosides accumulate in cyst epithelia in organoids and mice. Our findings define the human polycystin threshold as a surmountable drug target for pharmacological or gene therapy interventions, with relevance for understanding disease mechanisms and future clinical trials.

摘要

在多囊肾病 (PKD) 中,微观小管扩张成宏观囊肿。PKD 是世界上最常见的遗传疾病之一,通过杂合子失活功能突变遗传,但据推测还需要额外的失活功能。为了验证这一点,我们使用 CRISPR 碱基编辑技术建立了代表四种常见无义突变的等位基因系列的人类多能干细胞。当分化为肾脏类器官时,纯合突变体自发形成囊肿,而杂合突变体(原始或碱基校正)则不表现出表型。利用这些,我们确定了真核核糖体选择性糖苷(ERSG)作为 PKD 治疗药物,能够使这些相同的无义突变发生核糖体通读。两种不同的 ERSG 不仅可以防止囊肿的发生,而且可以通过部分恢复多囊蛋白的表达来限制已形成的囊肿的生长。此外,糖苷在类器官和小鼠的囊肿上皮中积累。我们的发现将人类多囊蛋白阈值定义为可通过药理学或基因治疗干预来克服的药物靶点,这对于理解疾病机制和未来的临床试验具有重要意义。

相似文献

1
2
Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease.
Nat Mater. 2017 Nov;16(11):1112-1119. doi: 10.1038/nmat4994. Epub 2017 Oct 2.
3
Pkd2 Deficiency in Embryonic Aqp2 + Progenitor Cells Is Sufficient to Cause Severe Polycystic Kidney Disease.
J Am Soc Nephrol. 2024 Apr 1;35(4):398-409. doi: 10.1681/ASN.0000000000000309. Epub 2024 Jan 23.
4
Glucose absorption drives cystogenesis in a human organoid-on-chip model of polycystic kidney disease.
Nat Commun. 2022 Dec 23;13(1):7918. doi: 10.1038/s41467-022-35537-2.
5
Polycystin-1: a master regulator of intersecting cystic pathways.
Trends Mol Med. 2014 May;20(5):251-60. doi: 10.1016/j.molmed.2014.01.004. Epub 2014 Jan 31.
6
-Dependent Renal Cystogenesis in Human Induced Pluripotent Stem Cell-Derived Ureteric Bud/Collecting Duct Organoids.
J Am Soc Nephrol. 2020 Oct;31(10):2355-2371. doi: 10.1681/ASN.2020030378. Epub 2020 Aug 3.
8
Ablation of Long Noncoding RNA Hoxb3os Exacerbates Cystogenesis in Mouse Polycystic Kidney Disease.
J Am Soc Nephrol. 2024 Jan 1;35(1):41-55. doi: 10.1681/ASN.0000000000000265. Epub 2023 Nov 13.
10
Polycystic kidney disease: novel insights into polycystin function.
Trends Mol Med. 2023 Apr;29(4):268-281. doi: 10.1016/j.molmed.2023.01.005. Epub 2023 Feb 15.

引用本文的文献

1
CRISPR and gene editing for kidney diseases: where are we?
Clin Kidney J. 2025 Jul 31;18(9):sfaf246. doi: 10.1093/ckj/sfaf246. eCollection 2025 Sep.
2
Autosomal Dominant Polycystic Kidney Disease: From Pathogenesis to Organoid Disease Models.
Biomedicines. 2025 Jul 18;13(7):1766. doi: 10.3390/biomedicines13071766.
4
Strategies to overcome the limitations of current organoid technology - engineered organoids.
J Tissue Eng. 2025 Apr 15;16:20417314251319475. doi: 10.1177/20417314251319475. eCollection 2025 Jan-Dec.
5
Ciliary Ion Channels in Polycystic Kidney Disease.
Cells. 2025 Mar 19;14(6):459. doi: 10.3390/cells14060459.
6
Gene Editing: An Effective Tool for the Future Treatment of Kidney Disease.
J Inflamm Res. 2025 Mar 17;18:4001-4018. doi: 10.2147/JIR.S506760. eCollection 2025.
8
Physiologic mechanisms underlying polycystic kidney disease.
Physiol Rev. 2025 Jul 1;105(3):1553-1607. doi: 10.1152/physrev.00018.2024. Epub 2025 Feb 12.
9
A novel rapalog shows improved safety vs. efficacy in a human organoid model of polycystic kidney disease.
Stem Cell Reports. 2025 Feb 11;20(2):102395. doi: 10.1016/j.stemcr.2024.102395. Epub 2025 Jan 23.
10
Prospects for gene therapy in polycystic kidney disease.
Curr Opin Nephrol Hypertens. 2025 Jan 1;34(1):121-127. doi: 10.1097/MNH.0000000000001030. Epub 2024 Oct 3.

本文引用的文献

1
Glucose absorption drives cystogenesis in a human organoid-on-chip model of polycystic kidney disease.
Nat Commun. 2022 Dec 23;13(1):7918. doi: 10.1038/s41467-022-35537-2.
2
The U UGA C sequence provides a favorable context to ELX-02 induced CFTR readthrough.
J Cyst Fibros. 2023 May;22(3):560-563. doi: 10.1016/j.jcf.2022.10.010. Epub 2022 Nov 16.
3
Classical Complement Pathway Inhibition in a "Human-On-A-Chip" Model of Autoimmune Demyelinating Neuropathies.
Adv Ther (Weinh). 2022 Jun;5(6). doi: 10.1002/adtp.202200030. Epub 2022 Apr 5.
4
PKD1 and PKD2 mRNA cis-inhibition drives polycystic kidney disease progression.
Nat Commun. 2022 Aug 15;13(1):4765. doi: 10.1038/s41467-022-32543-2.
5
An Biomarker to Characterize Ototoxic Compounds and Novel Protective Therapeutics.
Front Mol Neurosci. 2022 Jul 18;15:944846. doi: 10.3389/fnmol.2022.944846. eCollection 2022.
7
Autosomal Dominant Polycystic Kidney Disease Prevalence among a Racially Diverse United States Population, 2002 through 2018.
Kidney360. 2021 Sep 22;2(12):2010-2015. doi: 10.34067/KID.0004522021. eCollection 2021 Dec 30.
8
NanoLuc reporters identify nonsense mutations susceptible to drug-induced stop codon readthrough.
iScience. 2022 Feb 8;25(3):103891. doi: 10.1016/j.isci.2022.103891. eCollection 2022 Mar 18.
9
Renal plasticity revealed through reversal of polycystic kidney disease in mice.
Nat Genet. 2021 Dec;53(12):1649-1663. doi: 10.1038/s41588-021-00946-4. Epub 2021 Oct 11.
10
Targeting G542X CFTR nonsense alleles with ELX-02 restores CFTR function in human-derived intestinal organoids.
J Cyst Fibros. 2021 May;20(3):436-442. doi: 10.1016/j.jcf.2021.01.009. Epub 2021 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验