Suppr超能文献

高通量实验方法在放射性化学快速探索中的发展。

Development of High-Throughput Experimentation Approaches for Rapid Radiochemical Exploration.

机构信息

Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States.

Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 North University Avenue, Ann Arbor, Michigan 48109, United States.

出版信息

J Am Chem Soc. 2024 Apr 17;146(15):10581-10590. doi: 10.1021/jacs.3c14822. Epub 2024 Apr 5.

Abstract

Positron emission tomography is a widely used imaging platform for studying physiological processes. Despite the proliferation of modern synthetic methodologies for radiolabeling, the optimization of these reactions still primarily relies on inefficient one-factor-at-a-time approaches. High-throughput experimentation (HTE) has proven to be a powerful approach for optimizing reactions in many areas of chemical synthesis. However, to date, HTE has rarely been applied to radiochemistry. This is largely because of the short lifetime of common radioisotopes, which presents major challenges for efficient parallel reaction setup and analysis using standard equipment and workflows. Herein, we demonstrate an effective HTE workflow and apply it to the optimization of copper-mediated radiofluorination of pharmaceutically relevant boronate ester substrates. The workflow utilizes commercial equipment and allows for rapid analysis of reactions for optimizing reactions, exploring chemical space using pharmaceutically relevant aryl boronates for radiofluorinations, and constructing large radiochemistry data sets.

摘要

正电子发射断层扫描是一种广泛用于研究生理过程的成像平台。尽管现代合成方法在放射性标记方面有了很大的发展,但这些反应的优化仍然主要依赖于效率低下的单因素逐一方法。高通量实验(HTE)已被证明是优化化学合成许多领域反应的有力方法。然而,到目前为止,HTE 很少应用于放射化学。这在很大程度上是因为常见放射性同位素的半衰期短,这给使用标准设备和工作流程进行有效的平行反应设置和分析带来了重大挑战。在这里,我们展示了一种有效的 HTE 工作流程,并将其应用于优化药物相关硼酸酯底物的铜介导放射性氟化反应。该工作流程利用商业设备,可快速分析反应,优化反应,探索使用药物相关芳基硼酸进行放射性氟化的化学空间,并构建大型放射化学数据集。

相似文献

7
Light-Driven Radiochemistry with Fluorine-18, Carbon-11 and Zirconium-89.光驱动放射性化学:氟-18、碳-11 和锆-89。
Angew Chem Int Ed Engl. 2024 Apr 2;63(14):e202317136. doi: 10.1002/anie.202317136. Epub 2024 Jan 15.
9
Optimization of Direct Aromatic F-Labeling of Tetrazines.优化四嗪的直接芳基 F-标记。
Molecules. 2022 Jun 22;27(13):4022. doi: 10.3390/molecules27134022.

引用本文的文献

6
Radiochemistry: A Hot Field with Opportunities for Cool Chemistry.放射化学:一个充满机遇的热门领域——“酷化学”的天地 。
ACS Cent Sci. 2023 Nov 14;9(12):2183-2195. doi: 10.1021/acscentsci.3c01050. eCollection 2023 Dec 27.

本文引用的文献

1
Dataset Design for Building Models of Chemical Reactivity.用于构建化学反应性模型的数据集设计
ACS Cent Sci. 2023 Dec 8;9(12):2196-2204. doi: 10.1021/acscentsci.3c01163. eCollection 2023 Dec 27.
4
A Brief Introduction to Chemical Reaction Optimization.化学反应优化简介。
Chem Rev. 2023 Mar 22;123(6):3089-3126. doi: 10.1021/acs.chemrev.2c00798. Epub 2023 Feb 23.
7
On the Topic of Substrate Scope.关于底物范围的主题。
Org Lett. 2022 Oct 14;24(40):7247-7249. doi: 10.1021/acs.orglett.2c03246.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验