Cardiology Unit, Department of Medicine-Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
Cardiovasc Diabetol. 2024 Apr 5;23(1):122. doi: 10.1186/s12933-024-02196-0.
Histone modifications play a critical role in chromatin remodelling and regulate gene expression in health and disease. Histone methyltransferases EZH1, EZH2, and demethylases UTX, JMJD3, and UTY catalyse trimethylation of lysine 27 on histone H3 (H3K27me3). This study was designed to investigate whether H3K27me3 triggers hyperglycemia-induced oxidative and inflammatory transcriptional programs in the endothelium.
We studied human aortic endothelial cells exposed to high glucose (HAEC) or isolated from individuals with diabetes (D-HAEC). RT-qPCR, immunoblotting, chromatin immunoprecipitation (ChIP-qPCR), and confocal microscopy were performed to investigate the role of H3K27me3. We determined superoxide anion (O) production by ESR spectroscopy, NF-κB binding activity, and monocyte adhesion. Silencing/overexpression and pharmacological inhibition of chromatin modifying enzymes were used to modulate H3K27me3 levels. Furthermore, isometric tension studies and immunohistochemistry were performed in aorta from wild-type and db/db mice.
Incubation of HAEC to high glucose showed that upregulation of EZH2 coupled to reduced demethylase UTX and JMJD3 was responsible for the increased H3K27me3. ChIP-qPCR revealed that repressive H3K27me3 binding to superoxide dismutase and transcription factor JunD promoters is involved in glucose-induced O generation. Indeed, loss of JunD transcriptional inhibition favours NOX4 expression. Furthermore, H3K27me3-driven oxidative stress increased NF-κB p65 activity and downstream inflammatory genes. Interestingly, EZH2 inhibitor GSK126 rescued these endothelial derangements by reducing H3K27me3. We also found that H3K27me3 epigenetic signature alters transcriptional programs in D-HAEC and aortas from db/db mice.
EZH2-mediated H3K27me3 represents a key epigenetic driver of hyperglycemia-induced endothelial dysfunction. Targeting EZH2 may attenuate oxidative stress and inflammation and, hence, prevent vascular disease in diabetes.
组蛋白修饰在染色质重塑中起着关键作用,并调节健康和疾病中的基因表达。组蛋白甲基转移酶 EZH1、EZH2 以及去甲基酶 UTX、JMJD3 和 UTY 催化组蛋白 H3 赖氨酸 27 的三甲基化(H3K27me3)。本研究旨在探讨 H3K27me3 是否触发高血糖诱导的内皮细胞氧化和炎症转录程序。
我们研究了暴露于高葡萄糖(HAEC)或来自糖尿病个体(D-HAEC)的人主动脉内皮细胞。进行 RT-qPCR、免疫印迹、染色质免疫沉淀(ChIP-qPCR)和共聚焦显微镜检查,以研究 H3K27me3 的作用。我们通过 ESR 光谱法测定超氧阴离子(O)的产生、NF-κB 结合活性和单核细胞黏附。使用沉默/过表达和药理学抑制染色质修饰酶来调节 H3K27me3 水平。此外,在野生型和 db/db 小鼠的主动脉中进行等长张力研究和免疫组织化学研究。
将 HAEC 孵育至高葡萄糖时,发现 EZH2 的上调与去甲基酶 UTX 和 JMJD3 的减少有关,这导致 H3K27me3 的增加。ChIP-qPCR 显示,抑制性 H3K27me3 与超氧化物歧化酶和转录因子 JunD 启动子的结合涉及葡萄糖诱导的 O 生成。事实上,JunD 转录抑制的丧失有利于 NOX4 的表达。此外,H3K27me3 驱动的氧化应激增加了 NF-κB p65 活性和下游炎症基因。有趣的是,EZH2 抑制剂 GSK126 通过降低 H3K27me3 来挽救这些内皮紊乱。我们还发现,H3K27me3 表观遗传特征改变了 D-HAEC 和 db/db 小鼠主动脉中的转录程序。
EZH2 介导的 H3K27me3 是高血糖诱导的内皮功能障碍的关键表观遗传驱动因素。靶向 EZH2 可能减轻氧化应激和炎症,从而预防糖尿病中的血管疾病。