Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, 52062 Aachen, Germany.
Metab Eng. 2024 May;83:137-149. doi: 10.1016/j.ymben.2024.03.005. Epub 2024 Apr 4.
Metabolic reaction rates (fluxes) play a crucial role in comprehending cellular phenotypes and are essential in areas such as metabolic engineering, biotechnology, and biomedical research. The state-of-the-art technique for estimating fluxes is metabolic flux analysis using isotopic labelling (C-MFA), which uses a dataset-model combination to determine the fluxes. Bayesian statistical methods are gaining popularity in the field of life sciences, but the use of C-MFA is still dominated by conventional best-fit approaches. The slow take-up of Bayesian approaches is, at least partly, due to the unfamiliarity of Bayesian methods to metabolic engineering researchers. To address this unfamiliarity, we here outline similarities and differences between the two approaches and highlight particular advantages of the Bayesian way of flux analysis. With a real-life example, re-analysing a moderately informative labelling dataset of E. coli, we identify situations in which Bayesian methods are advantageous and more informative, pointing to potential pitfalls of current C-MFA evaluation approaches. We propose the use of Bayesian model averaging (BMA) for flux inference as a means of overcoming the problem of model uncertainty through its tendency to assign low probabilities to both, models that are unsupported by data, and models that are overly complex. In this capacity, BMA resembles a tempered Ockham's razor. With the tempered razor as a guide, BMA-based C-MFA alleviates the problem of model selection uncertainty and is thereby capable of becoming a game changer for metabolic engineering by uncovering new insights and inspiring novel approaches.
代谢反应速率(通量)在理解细胞表型方面起着至关重要的作用,在代谢工程、生物技术和生物医学研究等领域是必不可少的。估计通量的最先进技术是使用同位素标记的代谢通量分析(C-MFA),它使用数据集-模型组合来确定通量。贝叶斯统计方法在生命科学领域越来越受欢迎,但 C-MFA 的使用仍然由传统的最佳拟合方法主导。贝叶斯方法的采用缓慢,至少部分原因是代谢工程研究人员对贝叶斯方法不熟悉。为了解决这种不熟悉的问题,我们在这里概述了这两种方法的相似之处和不同之处,并强调了贝叶斯通量分析方法的特定优势。通过一个实际的例子,重新分析大肠杆菌的一个中等信息量的标记数据集,我们确定了贝叶斯方法在哪些情况下具有优势并且更具信息量,从而指出了当前 C-MFA 评估方法的潜在陷阱。我们建议使用贝叶斯模型平均(BMA)进行通量推断,作为通过对数据不支持的模型和过于复杂的模型分配低概率来克服模型不确定性问题的一种手段。在这种情况下,BMA 类似于温和的奥卡姆剃刀。有了温和的剃刀作为指导,基于 BMA 的 C-MFA 缓解了模型选择不确定性的问题,从而能够通过揭示新的见解和激发新的方法,成为代谢工程的游戏规则改变者。