Suppr超能文献

代谢通量分析和通量平衡分析中的模型验证和选择。

Model validation and selection in metabolic flux analysis and flux balance analysis.

机构信息

Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA.

Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA.

出版信息

Biotechnol Prog. 2024 Jan-Feb;40(1):e3413. doi: 10.1002/btpr.3413. Epub 2023 Nov 24.

Abstract

13C-Metabolic Flux Analysis (13C-MFA) and Flux Balance Analysis (FBA) are widely used to investigate the operation of biochemical networks in both biological and biotechnological research. Both methods use metabolic reaction network models of metabolism operating at steady state so that reaction rates (fluxes) and the levels of metabolic intermediates are constrained to be invariant. They provide estimated (MFA) or predicted (FBA) values of the fluxes through the network in vivo, which cannot be measured directly. These fluxes can shed light on basic biology and have been successfully used to inform metabolic engineering strategies. Several approaches have been taken to test the reliability of estimates and predictions from constraint-based methods and to compare alternative model architectures. Despite advances in other areas of the statistical evaluation of metabolic models, such as the quantification of flux estimate uncertainty, validation and model selection methods have been underappreciated and underexplored. We review the history and state-of-the-art in constraint-based metabolic model validation and model selection. Applications and limitations of the χ -test of goodness-of-fit, the most widely used quantitative validation and selection approach in 13C-MFA, are discussed, and complementary and alternative forms of validation and selection are proposed. A combined model validation and selection framework for 13C-MFA incorporating metabolite pool size information that leverages new developments in the field is presented and advocated for. Finally, we discuss how adopting robust validation and selection procedures can enhance confidence in constraint-based modeling as a whole and ultimately facilitate more widespread use of FBA in biotechnology.

摘要

13C-代谢通量分析(13C-MFA)和通量平衡分析(FBA)广泛用于研究生物和生物技术研究中生化网络的运行。这两种方法都使用代谢反应网络模型在稳态下运行,因此反应速率(通量)和代谢中间产物的水平受到限制,保持不变。它们提供了体内网络中通量的估计(MFA)或预测(FBA)值,这些值不能直接测量。这些通量可以揭示基本生物学,并已成功用于为代谢工程策略提供信息。已经采取了几种方法来测试基于约束的方法的估计值和预测值的可靠性,并比较替代模型架构。尽管在代谢模型统计评估的其他领域(例如通量估计不确定性的量化)取得了进展,但验证和模型选择方法仍未得到充分重视和探索。我们回顾了基于约束的代谢模型验证和选择的历史和最新进展。讨论了最广泛使用的 13C-MFA 定量验证和选择方法——χ-拟合优度检验的应用和局限性,并提出了补充和替代的验证和选择形式。提出并提倡了一种结合代谢物池大小信息的 13C-MFA 综合模型验证和选择框架,该框架利用了该领域的新发展。最后,我们讨论了采用稳健的验证和选择程序如何增强对基于约束的建模的信心,并最终促进 FBA 在生物技术中的更广泛应用。

相似文献

1
Model validation and selection in metabolic flux analysis and flux balance analysis.
Biotechnol Prog. 2024 Jan-Feb;40(1):e3413. doi: 10.1002/btpr.3413. Epub 2023 Nov 24.
6
The FBA solution space kernel: introduction and illustrative examples.
BMC Bioinformatics. 2025 Jul 17;26(1):182. doi: 10.1186/s12859-025-06216-y.
7
Behavioral interventions to reduce risk for sexual transmission of HIV among men who have sex with men.
Cochrane Database Syst Rev. 2008 Jul 16(3):CD001230. doi: 10.1002/14651858.CD001230.pub2.
8
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
9
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.

本文引用的文献

1
A pathogen-specific isotope tracing approach reveals metabolic activities and fluxes of intracellular Salmonella.
PLoS Biol. 2023 Aug 18;21(8):e3002198. doi: 10.1371/journal.pbio.3002198. eCollection 2023 Aug.
3
Mitigating biomass composition uncertainties in flux balance analysis using ensemble representations.
Comput Struct Biotechnol J. 2023 Jul 23;21:3736-3745. doi: 10.1016/j.csbj.2023.07.025. eCollection 2023.
4
Systems biology elucidates the distinctive metabolic niche filled by the human gut microbe Eggerthella lenta.
PLoS Biol. 2023 May 19;21(5):e3002125. doi: 10.1371/journal.pbio.3002125. eCollection 2023 May.
5
A High-Quality Genome-Scale Model for Metabolism.
ACS Synth Biol. 2023 Jun 16;12(6):1632-1644. doi: 10.1021/acssynbio.2c00618. Epub 2023 May 15.
6
New Insights on Metabolic Features of Based on Multistrain Genome-Scale Metabolic Modeling.
Int J Mol Sci. 2023 Apr 11;24(8):7091. doi: 10.3390/ijms24087091.
7
Accurate flux predictions using tissue-specific gene expression in plant metabolic modeling.
Bioinformatics. 2023 May 4;39(5). doi: 10.1093/bioinformatics/btad186.
8
Highlighting the potential of PCC 7942 as platform to produce α-linolenic acid through an updated genome-scale metabolic modeling.
Front Microbiol. 2023 Mar 14;14:1126030. doi: 10.3389/fmicb.2023.1126030. eCollection 2023.
9
A Genome-Scale Metabolic Model of Marine Heterotroph Vibrio splendidus Strain 1A01.
mSystems. 2023 Apr 27;8(2):e0037722. doi: 10.1128/msystems.00377-22. Epub 2023 Feb 28.
10
Vibrio natriegens genome-scale modeling reveals insights into halophilic adaptations and resource allocation.
Mol Syst Biol. 2023 Apr 12;19(4):e10523. doi: 10.15252/msb.202110523. Epub 2023 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验