Read Benjamin J, Mitchell John B O, da Silva Rafael G
School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK.
EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK.
Commun Chem. 2024 Apr 6;7(1):77. doi: 10.1038/s42004-024-01165-8.
Heavy-isotope substitution into enzymes slows down bond vibrations and may alter transition-state barrier crossing probability if this is coupled to fast protein motions. ATP phosphoribosyltransferase from Acinetobacter baumannii is a multi-protein complex where the regulatory protein HisZ allosterically enhances catalysis by the catalytic protein HisG. This is accompanied by a shift in rate-limiting step from chemistry to product release. Here we report that isotope-labelling of HisG has no effect on the nonactivated reaction, which involves negative activation heat capacity, while HisZ-activated HisG catalytic rate decreases in a strictly mass-dependent fashion across five different HisG masses, at low temperatures. Surprisingly, the effect is not linked to the chemical step, but to fast motions governing product release in the activated enzyme. Disruption of a specific enzyme-product interaction abolishes the isotope effects. Results highlight how altered protein mass perturbs allosterically modulated thermal motions relevant to the catalytic cycle beyond the chemical step.
将重同位素引入酶中会减缓键振动,并且如果这与快速的蛋白质运动相关联,可能会改变过渡态穿越势垒的概率。鲍曼不动杆菌的ATP磷酸核糖基转移酶是一种多蛋白复合物,其中调节蛋白HisZ通过催化蛋白HisG变构增强催化作用。这伴随着限速步骤从化学反应转变为产物释放。在此我们报道,HisG的同位素标记对非活化反应没有影响,该非活化反应涉及负的活化热容量,而在低温下,HisZ激活的HisG催化速率在跨越五种不同HisG质量时以严格的质量依赖方式降低。令人惊讶的是,这种效应与化学反应步骤无关,而是与控制活化酶中产物释放的快速运动有关。破坏特定的酶 - 产物相互作用会消除同位素效应。结果突出了蛋白质质量的改变如何扰乱与催化循环相关的变构调节热运动,这种热运动超出了化学反应步骤。