School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom.
School of Chemistry, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom.
ACS Infect Dis. 2022 Jan 14;8(1):197-209. doi: 10.1021/acsinfecdis.1c00539. Epub 2021 Dec 20.
ATP phosphoribosyltransferase (ATPPRT) catalyzes the first step of histidine biosynthesis in bacteria, namely, the condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate (PRPP) to generate -(5-phospho-β-d-ribosyl)-ATP (PRATP) and pyrophosphate. Catalytic (HisG) and regulatory (HisZ) subunits assemble in a hetero-octamer where HisZ activates HisG and mediates allosteric inhibition by histidine. In , HisG is necessary for the bacterium to persist in the lung during pneumonia. Inhibition of ATPPRT is thus a promising strategy for specific antibiotic development. Here, ATPPRT is shown to follow a rapid equilibrium random kinetic mechanism, unlike any other ATPPRT. Histidine noncompetitively inhibits ATPPRT. Binding kinetics indicates histidine binds to free ATPPRT and to ATPPRT:PRPP and ATPPRT:ATP binary complexes with similar affinity following a two-step binding mechanism, but with distinct kinetic partition of the initial enzyme:inhibitor complex. The dipeptide histidine-proline inhibits ATPPRT competitively and likely uncompetitively, respectively, against PRPP and ATP. Rapid kinetics analysis shows His-Pro binds to the ATPPRT:ATP complex via a two-step binding mechanism. A related HisZ that shares 43% sequence identity with HisZ is a tight-binding allosteric inhibitor of HisG. These findings lay the foundation for inhibitor design against ATPPRT.
三磷酸核苷磷酸核糖转移酶(ATPPRT)催化细菌中组氨酸生物合成的第一步,即 ATP 和 5-磷酸-α-d-核糖基-1-焦磷酸(PRPP)的缩合,生成 -(5-磷酸-β-d-核糖基)-ATP(PRATP)和焦磷酸。催化(HisG)和调节(HisZ)亚基组装成异八聚体,其中 HisZ 激活 HisG 并介导组氨酸的变构抑制。在 ,HisG 是细菌在肺炎期间在肺部持续存在所必需的。因此,抑制 ATPPRT 是开发特定抗生素的有前途的策略。这里,ATPPRT 表现出快速平衡随机动力学机制,与其他任何 ATPPRT 都不同。组氨酸非竞争性抑制 ATPPRT。结合动力学表明组氨酸结合游离 ATPPRT 和 ATPPRT:PRPP 和 ATPPRT:ATP 二元复合物,亲和力相似,遵循两步结合机制,但初始酶:抑制剂复合物的动力学分配不同。二肽组氨酸-脯氨酸分别竞争性和可能非竞争性地抑制 PRPP 和 ATP 对 ATPPRT 的抑制。快速动力学分析表明 His-Pro 通过两步结合机制与 ATPPRT:ATP 复合物结合。与 HisZ 共享 43%序列同一性的相关 HisZ 是 HisG 的紧密结合变构抑制剂。这些发现为针对 ATPPRT 的抑制剂设计奠定了基础。