Suppr超能文献

ATP 磷酸核糖基转移酶的晶体结构、稳态和预稳态动力学。

Crystal Structure, Steady-State, and Pre-Steady-State Kinetics of ATP Phosphoribosyltransferase.

机构信息

School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, United Kingdom.

EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, United Kingdom.

出版信息

Biochemistry. 2024 Jan 16;63(2):230-240. doi: 10.1021/acs.biochem.3c00551. Epub 2023 Dec 27.

Abstract

The first step of histidine biosynthesis in , the condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate to produce -(5-phospho-β-d-ribosyl)-ATP (PRATP) and pyrophosphate, is catalyzed by the hetero-octameric enzyme ATP phosphoribosyltransferase, a promising target for antibiotic design. The catalytic subunit, HisG, is allosterically activated upon binding of the regulatory subunit, HisZ, to form the hetero-octameric holoenzyme (ATPPRT), leading to a large increase in . Here, we present the crystal structure of ATPPRT, along with kinetic investigations of the rate-limiting steps governing catalysis in the nonactivated (HisG) and activated (ATPPRT) forms of the enzyme. A pH-rate profile showed that maximum catalysis is achieved above pH 8.0. Surprisingly, at 25 °C, is higher when ADP replaces ATP as substrate for ATPPRT but not for HisG. The HisG-catalyzed reaction is limited by the chemical step, as suggested by the enhancement of when Mg was replaced by Mn, and by the lack of a pre-steady-state burst of product formation. Conversely, the ATPPRT-catalyzed reaction rate is determined by PRATP diffusion from the active site, as gleaned from a substantial solvent viscosity effect. A burst of product formation could be inferred from pre-steady-state kinetics, but the first turnover was too fast to be directly observed. Lowering the temperature to 5 °C allowed observation of the PRATP formation burst by ATPPRT. At this temperature, the single-turnover rate constant was significantly higher than , providing additional evidence for a step after chemistry limiting catalysis by ATPPRT. This demonstrates allosteric activation by HisZ accelerates the chemical step.

摘要

组氨酸生物合成的第一步是 ATP 和 5-磷酸-α-d-核糖-1-焦磷酸缩合生成 (5-磷酸-β-d-核糖)-ATP(PRATP)和焦磷酸,该反应由异构八聚体酶 ATP 磷酸核糖基转移酶催化,该酶是抗生素设计的一个有前途的靶点。催化亚基 HisG 在与调节亚基 HisZ 结合形成异构八聚体全酶(ATPPRT)后,发生别构激活,导致反应速率大大增加。在这里,我们展示了 ATPPRT 的晶体结构,并对非激活(HisG)和激活(ATPPRT)形式的酶的催化限速步骤进行了动力学研究。pH 速率曲线表明,最大催化作用发生在 pH 8.0 以上。令人惊讶的是,在 25°C 时,当 ADP 取代 ATP 作为 ATPPRT 的底物时,而不是 HisG 的底物时, 更高。HisG 催化的反应受到化学步骤的限制,这可以通过用 Mn 代替 Mg 增强 和没有产物形成的预稳态爆发来证明。相反,ATPPRT 催化的反应速率由 PRATP 从活性位点的扩散决定,这可以从溶剂粘度的显著影响中得出。可以从稳态动力学推断出产物形成的爆发,但第一个周转率太快而无法直接观察到。将温度降低到 5°C 可以允许观察 ATPPRT 形成 PRATP 的爆发。在这个温度下,单轮周转率明显高于 ,这为 ATPPRT 限制催化的化学步骤之后的一个步骤提供了额外的证据。这表明 HisZ 的别构激活加速了化学步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3835/10795190/6851a8af9ed9/bi3c00551_0009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验