Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG, UK.
Acta Neuropathol Commun. 2022 Aug 22;10(1):121. doi: 10.1186/s40478-022-01418-4.
Axonal transport ensures long-range delivery of essential cargoes between proximal and distal compartments, and is needed for neuronal development, function, and survival. Deficits in axonal transport have been detected at pre-symptomatic stages in the SOD1 and TDP-43 mouse models of amyotrophic lateral sclerosis (ALS), suggesting that impairments in this critical process are fundamental for disease pathogenesis. Strikingly, in ALS, fast motor neurons (FMNs) degenerate first whereas slow motor neurons (SMNs) are more resistant, and this is a currently unexplained phenomenon. The main aim of this investigation was to determine the effects of brain-derived neurotrophic factor (BDNF) on in vivo axonal transport in different α-motor neuron (MN) subtypes in wild-type (WT) and SOD1 mice. We report that despite displaying similar basal transport speeds, stimulation of wild-type MNs with BDNF enhances in vivo trafficking of signalling endosomes specifically in FMNs. This BDNF-mediated enhancement of transport was also observed in primary ventral horn neuronal cultures. However, FMNs display selective impairment of axonal transport in vivo in symptomatic SOD1 mice, and are refractory to BDNF stimulation, a phenotype that was also observed in primary embryonic SOD1 neurons. Furthermore, symptomatic SOD1 mice display upregulation of the classical non-pro-survival truncated TrkB and p75 receptors in muscles, sciatic nerves, and Schwann cells. Altogether, these data indicate that cell- and non-cell autonomous BDNF signalling is impaired in SOD1 MNs, thus identifying a new key deficit in ALS.
轴突运输确保了近端和远端隔室之间的重要货物的长距离运输,对于神经元的发育、功能和存活都是必需的。在肌萎缩侧索硬化症(ALS)的 SOD1 和 TDP-43 小鼠模型的前症状阶段已经检测到轴突运输缺陷,这表明这种关键过程的损伤是疾病发病机制的基础。引人注目的是,在 ALS 中,快速运动神经元(FMNs)首先退化,而慢速运动神经元(SMNs)则更具抗性,这是一个目前尚未解释的现象。本研究的主要目的是确定脑源性神经营养因子(BDNF)对野生型(WT)和 SOD1 小鼠中不同α-运动神经元(MN)亚型体内轴突运输的影响。我们报告说,尽管显示出相似的基础运输速度,但 BDNF 刺激 WT MN 可特异性增强 FMNs 中信号内体的体内运输。这种 BDNF 介导的运输增强也在原代腹角神经元培养物中观察到。然而,在有症状的 SOD1 小鼠中,FMNs 显示出选择性的体内轴突运输损伤,并且对 BDNF 刺激无反应,这一表型也在原代胚胎 SOD1 神经元中观察到。此外,有症状的 SOD1 小鼠在肌肉、坐骨神经和施万细胞中显示出经典非生存截断 TrkB 和 p75 受体的上调。总之,这些数据表明 SOD1 MN 中的细胞和非细胞自主 BDNF 信号受损,从而确定了 ALS 的一个新的关键缺陷。