Suppr超能文献

用于全固态锂金属电池的基于聚磷腈的阴离子锚定聚合物电解质

Polyphosphazene-Based Anion-Anchored Polymer Electrolytes For All-Solid-State Lithium Metal Batteries.

作者信息

Johnson Billy R, Sankara Raman Ashwin, Narla Aashray, Jhulki Samik, Chen Lihua, Marder Seth R, Ramprasad Rampi, Turcheniuk Kostia, Yushin Gleb

机构信息

School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

出版信息

ACS Omega. 2024 Mar 19;9(13):15410-15420. doi: 10.1021/acsomega.3c10311. eCollection 2024 Apr 2.

Abstract

Safety concerns of traditional liquid electrolytes, especially when paired with lithium (Li) metal anodes, have stimulated research of solid polymer electrolytes (SPEs) to exploit the superior thermal and mechanical properties of polymers. Polyphosphazenes are primarily known for their use as flame retardant materials and have demonstrated high Li-ion conductivity owing to their highly flexible P = N backbone which promotes Li-ion conduction via inter- and intrachain hopping along the polymer backbone. While polyphosphazenes are largely unexplored as SPEs in the literature, a few existing examples showed promising ionic conductivity. By anchoring the anion to the polymer backbone, one may primarily allow the movement of Li ions, alleviating the detrimental effects of polarization that are common in conventional dual-ion conducting SPEs. Anion-anchored SPEs, known as single Li-ion conducting solid polymer electrolytes (SLiC-SPEs), exhibit high Li-ion transference numbers (), which limits Li dendrite growth, thus further increasing the safety of SPEs. However, previously reported SLiC-SPEs suffer from inadequate ionic conductivity, small electrochemical stability windows (ESWs), and limited cycling stability. Herein, we report three polyphosphazene-based SLiC-SPEs comprising lithiated polyphosphazenes. The SLiC polyphosphazenes were prepared through a facile synthesis route, opening the door for enhanced tunability of polymer properties via facile macromolecular nucleophilic substitution and subsequent lithiation. State-of-the-art characterization techniques, such as differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS), and solid-state nuclear magnetic resonance spectroscopy (ssNMR) were employed to probe the effect of the polymer structure on Li-ion dynamics and other electrochemical properties. Produced SPEs showed thermal stability up to ∼208 °C with ionic conductivities comparable to that of the best-reported SLiC-SPEs that definitively comprise no solvents or plasticizers. Among the three lithiated polyphosphazenes, the SPE containing dilithium poly[bis(trifluoroethylamino)phosphazene] (pTFAP2Li) exhibited the most promising electrochemical characteristics with of 0.76 and compatibility with both Li metal anodes and LiFePO (LFP) cathodes; through 40 cycles at 100 °C, the PEO-pTFAP2Li blend showed 81.2% capacity utilization and 86.8% capacity retention. This work constitutes one of the first successful demonstrations of the cycling performance of a true all-solid-state Li-metal battery using SLiC polyphosphazene SPEs.

摘要

传统液体电解质的安全问题,尤其是与锂(Li)金属负极配对使用时,激发了对固体聚合物电解质(SPEs)的研究,以利用聚合物优异的热性能和机械性能。聚磷腈主要以用作阻燃材料而闻名,并且由于其高度灵活的P=N主链,通过聚合物主链上的链间和链内跳跃促进锂离子传导,已显示出高锂离子传导率。虽然聚磷腈在文献中作为SPEs的研究还很少,但现有的一些例子显示出了有前景的离子传导率。通过将阴离子锚定在聚合物主链上,可以主要允许锂离子移动,减轻传统双离子传导SPEs中常见的极化有害影响。阴离子锚定的SPEs,即单锂离子传导固体聚合物电解质(SLiC-SPEs),具有高锂离子迁移数(),这限制了锂枝晶的生长,从而进一步提高了SPEs的安全性。然而,先前报道的SLiC-SPEs存在离子传导率不足、电化学稳定窗口(ESWs)小和循环稳定性有限等问题。在此,我们报道了三种基于聚磷腈的SLiC-SPEs,它们由锂化聚磷腈组成。这些SLiC聚磷腈是通过简便的合成路线制备的,通过简便的大分子亲核取代和随后的锂化,为增强聚合物性能的可调性打开了大门。采用了诸如差示扫描量热法(DSC)、电化学阻抗谱(EIS)和固态核磁共振谱(ssNMR)等先进的表征技术,来探究聚合物结构对锂离子动力学和其他电化学性能的影响。所制备的SPEs在高达约208°C的温度下表现出热稳定性,其离子传导率与报道的最好的不含溶剂或增塑剂的SLiC-SPEs相当。在三种锂化聚磷腈中,含有双锂聚[双(三氟乙氨基)磷腈](pTFAP2Li)的SPE表现出最有前景的电化学特性,其为0.76,并且与锂金属负极和磷酸铁锂(LFP)正极都具有相容性;在100°C下经过40个循环,PEO-pTFAP2Li共混物显示出81.2%的容量利用率和86.8%的容量保持率。这项工作是使用SLiC聚磷腈SPEs的真正全固态锂金属电池循环性能的首批成功演示之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83a9/10993324/14dd02e09f55/ao3c10311_0009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验