Eshetu Gebrekidan Gebresilassie, Judez Xabier, Li Chunmei, Martinez-Ibañez Maria, Gracia Ismael, Bondarchuk Oleksandr, Carrasco Javier, Rodriguez-Martinez Lide M, Zhang Heng, Armand Michel
Electrical Energy Storage Department , CIC Energigune, Parque Tecnológico de Álava , Albert Einstein 48 , 01510 Miñano , Álava , Spain.
J Am Chem Soc. 2018 Aug 8;140(31):9921-9933. doi: 10.1021/jacs.8b04612. Epub 2018 Jul 30.
With a remarkably higher theoretical energy density compared to lithium-ion batteries (LIBs) and abundance of elemental sulfur, lithium sulfur (Li-S) batteries have emerged as one of the most promising alternatives among all the post LIB technologies. In particular, the coupling of solid polymer electrolytes (SPEs) with the cell chemistry of Li-S batteries enables a safe and high-capacity electrochemical energy storage system, due to the better processability and less flammability of SPEs compared to liquid electrolytes. However, the practical deployment of all solid-state Li-S batteries (ASSLSBs) containing SPEs is largely hindered by the low accessibility of active materials and side reactions of soluble polysulfide species, resulting in a poor specific capacity and cyclability. In the present work, an ultrahigh performance of ASSLSBs is obtained via an anomalous synergistic effect between (fluorosulfonyl)(trifluoromethanesulfonyl)imide anions inherited from the design of lithium salts in SPEs and the polysulfide species formed during the cycling. The corresponding Li-S cells deliver high specific/areal capacity (1394 mAh g, 1.2 mAh cm), good Coulombic efficiency, and superior rate capability (∼800 mAh g after 60 cycles). These results imply the importance of the molecular structure of lithium salts in ASSLSBs and pave a way for future development of safe and cost-effective Li-S batteries.
与锂离子电池(LIBs)相比,锂硫(Li-S)电池具有显著更高的理论能量密度,且元素硫储量丰富,已成为所有LIB后技术中最有前景的替代方案之一。特别是,固体聚合物电解质(SPEs)与Li-S电池的电池化学相结合,能够实现安全且高容量的电化学储能系统,这是因为与液体电解质相比,SPEs具有更好的加工性能和更低的可燃性。然而,包含SPEs的全固态锂硫电池(ASSLSBs)的实际应用在很大程度上受到活性材料可及性低以及可溶性多硫化物物种的副反应的阻碍,导致比容量和循环稳定性较差。在本工作中,通过SPEs中锂盐设计所继承的(氟磺酰基)(三氟甲磺酰基)亚胺阴离子与循环过程中形成的多硫化物物种之间的异常协同效应,获得了超高性能的ASSLSBs。相应的Li-S电池具有高比容量/面积容量(1394 mAh g,1.2 mAh cm)、良好的库仑效率和优异的倍率性能(60次循环后约800 mAh g)。这些结果表明了锂盐分子结构在ASSLSBs中的重要性,并为未来安全且经济高效的Li-S电池的发展铺平了道路。