Georgiadis Marios, der Heiden Franca Auf, Abbasi Hamed, Ettema Loes, Nirschl Jeffrey, Taghavi Hossein Moein, Wakatsuki Moe, Liu Andy, Ho William Hai Dang, Carlson Mackenzie, Doukas Michail, Koppes Sjors A, Keereweer Stijn, Sobel Raymond A, Setsompop Kawin, Liao Congyu, Amunts Katrin, Axer Markus, Zeineh Michael, Menzel Miriam
Department of Radiology, Stanford University, Stanford, CA 94305, USA.
Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich, Germany.
bioRxiv. 2025 Mar 14:2024.03.26.586745. doi: 10.1101/2024.03.26.586745.
Mapping the brain's fiber network is crucial for understanding its function and malfunction, but resolving nerve trajectories over large fields of view is challenging. Electron microscopy only studies small brain volumes, diffusion magnetic resonance imaging (dMRI) has limited spatial resolution, and polarization microscopy provides unidirectional orientations in birefringence-preserving tissues. Scattered light imaging (SLI) has previously enabled micron-resolution mapping of multi-directional fibers in unstained brain cryo-sections. Here, we show that using a highly sensitive setup, computational SLI (ComSLI) can map fiber networks in histology independent of sample preparation, also in formalin-fixed paraffin-embedded (FFPE) tissues including whole human brain sections. We showcase this method in new and archived, animal and human brain sections, for different stains and steps of sample preparation (in paraffin, deparaffinized, stained) and for unstained fresh-frozen samples. Employing novel analyses, we convert microscopic orientations to microstructure-informed fiber orientation distributions (μFODs). Adapting MR tractography tools, we trace axonal trajectories via orientation distribution functions and microstructure-derived tractograms revealing white and gray matter connectivity. These allow us to identify altered microstructure in multiple sclerosis and leukoencephalopathy, reveal deficient tracts in hippocampal sclerosis and Alzheimer's disease, and show key advantages over dMRI, polarization microscopy, and structure tensor analysis. Finally, we map fibers in non-brain tissues, including muscle, bone, and blood vessels, unveiling the tissue's function. Our cost-effective, versatile approach enables micron-resolution studies of intricate fiber networks across tissues, species, diseases, and sample preparations, offering new dimensions to neuroscientific and biomedical research.
绘制大脑的纤维网络对于理解其功能和功能失调至关重要,但在大视野范围内解析神经轨迹具有挑战性。电子显微镜仅研究小体积的脑区,扩散磁共振成像(dMRI)的空间分辨率有限,而偏振显微镜仅能在双折射保留组织中提供单向取向。散射光成像(SLI)此前已能够对未染色的脑冷冻切片中的多向纤维进行微米级分辨率的映射。在此,我们表明,使用高灵敏度装置,计算散射光成像(ComSLI)可以在不依赖样品制备的组织学中绘制纤维网络,在福尔马林固定石蜡包埋(FFPE)组织中也能做到,包括整个人脑切片。我们在新的和存档的动物及人脑切片中展示了这种方法,适用于不同的染色和样品制备步骤(石蜡包埋、脱石蜡、染色)以及未染色的新鲜冷冻样品。采用新颖的分析方法,我们将微观取向转换为基于微观结构的纤维取向分布(μFODs)。通过改编磁共振纤维束成像工具,我们通过取向分布函数和源自微观结构的纤维束图追踪轴突轨迹,揭示白质和灰质的连接性。这使我们能够识别多发性硬化症和白质脑病中微观结构的改变,揭示海马硬化症和阿尔茨海默病中纤维束的缺陷,并显示出相对于dMRI、偏振显微镜和结构张量分析的关键优势。最后,我们绘制了非脑组织(包括肌肉、骨骼和血管)中的纤维,揭示了组织的功能。我们这种经济高效、多功能的方法能够对跨组织、物种、疾病和样品制备的复杂纤维网络进行微米级分辨率研究,为神经科学和生物医学研究提供了新的维度。