Department of Radiology, Stanford School of Medicine, Stanford, CA, USA; Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland.
Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich 52425, Germany; Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands.
Acta Biomater. 2023 Jul 1;164:317-331. doi: 10.1016/j.actbio.2023.04.029. Epub 2023 Apr 23.
Myelinated axons (nerve fibers) efficiently transmit signals throughout the brain via action potentials. Multiple methods that are sensitive to axon orientations, from microscopy to magnetic resonance imaging, aim to reconstruct the brain's structural connectome. As billions of nerve fibers traverse the brain with various possible geometries at each point, resolving fiber crossings is necessary to generate accurate structural connectivity maps. However, doing so with specificity is a challenging task because signals originating from oriented fibers can be influenced by brain (micro)structures unrelated to myelinated axons. X-ray scattering can specifically probe myelinated axons due to the periodicity of the myelin sheath, which yields distinct peaks in the scattering pattern. Here, we show that small-angle X-ray scattering (SAXS) can be used to detect myelinated, axon-specific fiber crossings. We first demonstrate the capability using strips of human corpus callosum to create artificial double- and triple-crossing fiber geometries, and we then apply the method in mouse, pig, vervet monkey, and human brains. We compare results to polarized light imaging (3D-PLI), tracer experiments, and to outputs from diffusion MRI that sometimes fails to detect crossings. Given its specificity, capability of 3-dimensional sampling and high resolution, SAXS could serve as a ground truth for validating fiber orientations derived using diffusion MRI as well as microscopy-based methods. STATEMENT OF SIGNIFICANCE: To study how the nerve fibers in our brain are interconnected, scientists need to visualize their trajectories, which often cross one another. Here, we show the unique capacity of small-angle X-ray scattering (SAXS) to study these fiber crossings without use of labeling, taking advantage of SAXS's specificity to myelin - the insulating sheath that is wrapped around nerve fibers. We use SAXS to detect double and triple crossing fibers and unveil intricate crossings in mouse, pig, vervet monkey, and human brains. This non-destructive method can uncover complex fiber trajectories and validate other less specific imaging methods (e.g., MRI or microscopy), towards accurate mapping of neuronal connectivity in the animal and human brain.
有髓轴突(神经纤维)通过动作电位在整个大脑中高效传递信号。从显微镜到磁共振成像,多种对轴突方向敏感的方法旨在重建大脑的结构连接组。由于数十亿条神经纤维以各种可能的几何形状穿过大脑,因此必须解决纤维交叉问题,以生成准确的结构连通图。然而,由于源自定向纤维的信号可能受到与有髓轴突无关的脑(微观)结构的影响,因此具有特异性地做到这一点是一项具有挑战性的任务。X 射线散射可以专门探测有髓鞘的轴突,因为髓鞘的周期性会在散射模式中产生明显的峰。在这里,我们表明小角 X 射线散射(SAXS)可用于检测有髓鞘的、轴突特异性的纤维交叉。我们首先使用人类胼胝体条带证明了该方法的能力,以创建人工双交叉和三交叉纤维结构,然后将该方法应用于小鼠、猪、恒河猴和人类大脑。我们将结果与偏光成像(3D-PLI)、示踪实验以及有时无法检测到交叉的扩散 MRI 输出进行了比较。鉴于其特异性、三维采样能力和高分辨率,SAXS 可以作为验证使用扩散 MRI 以及基于显微镜的方法得出的纤维方向的真实值。
为了研究我们大脑中的神经纤维是如何相互连接的,科学家们需要可视化它们的轨迹,这些轨迹经常相互交叉。在这里,我们展示了小角 X 射线散射(SAXS)的独特能力,无需标记即可研究这些纤维交叉,利用 SAXS 对髓鞘的特异性 - 包裹在神经纤维周围的绝缘鞘。我们使用 SAXS 检测双交叉和三交叉纤维,并揭示了小鼠、猪、恒河猴和人类大脑中错综复杂的交叉。这种非破坏性方法可以揭示复杂的纤维轨迹,并验证其他不太特定的成像方法(例如 MRI 或显微镜),以实现对动物和人类大脑神经元连接的准确映射。