Suppr超能文献

利用小角度 X 射线散射技术在小鼠、猪、猴和人脑内观察交叉纤维。

Imaging crossing fibers in mouse, pig, monkey, and human brain using small-angle X-ray scattering.

机构信息

Department of Radiology, Stanford School of Medicine, Stanford, CA, USA; Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland.

Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich 52425, Germany; Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands.

出版信息

Acta Biomater. 2023 Jul 1;164:317-331. doi: 10.1016/j.actbio.2023.04.029. Epub 2023 Apr 23.

Abstract

Myelinated axons (nerve fibers) efficiently transmit signals throughout the brain via action potentials. Multiple methods that are sensitive to axon orientations, from microscopy to magnetic resonance imaging, aim to reconstruct the brain's structural connectome. As billions of nerve fibers traverse the brain with various possible geometries at each point, resolving fiber crossings is necessary to generate accurate structural connectivity maps. However, doing so with specificity is a challenging task because signals originating from oriented fibers can be influenced by brain (micro)structures unrelated to myelinated axons. X-ray scattering can specifically probe myelinated axons due to the periodicity of the myelin sheath, which yields distinct peaks in the scattering pattern. Here, we show that small-angle X-ray scattering (SAXS) can be used to detect myelinated, axon-specific fiber crossings. We first demonstrate the capability using strips of human corpus callosum to create artificial double- and triple-crossing fiber geometries, and we then apply the method in mouse, pig, vervet monkey, and human brains. We compare results to polarized light imaging (3D-PLI), tracer experiments, and to outputs from diffusion MRI that sometimes fails to detect crossings. Given its specificity, capability of 3-dimensional sampling and high resolution, SAXS could serve as a ground truth for validating fiber orientations derived using diffusion MRI as well as microscopy-based methods. STATEMENT OF SIGNIFICANCE: To study how the nerve fibers in our brain are interconnected, scientists need to visualize their trajectories, which often cross one another. Here, we show the unique capacity of small-angle X-ray scattering (SAXS) to study these fiber crossings without use of labeling, taking advantage of SAXS's specificity to myelin - the insulating sheath that is wrapped around nerve fibers. We use SAXS to detect double and triple crossing fibers and unveil intricate crossings in mouse, pig, vervet monkey, and human brains. This non-destructive method can uncover complex fiber trajectories and validate other less specific imaging methods (e.g., MRI or microscopy), towards accurate mapping of neuronal connectivity in the animal and human brain.

摘要

有髓轴突(神经纤维)通过动作电位在整个大脑中高效传递信号。从显微镜到磁共振成像,多种对轴突方向敏感的方法旨在重建大脑的结构连接组。由于数十亿条神经纤维以各种可能的几何形状穿过大脑,因此必须解决纤维交叉问题,以生成准确的结构连通图。然而,由于源自定向纤维的信号可能受到与有髓轴突无关的脑(微观)结构的影响,因此具有特异性地做到这一点是一项具有挑战性的任务。X 射线散射可以专门探测有髓鞘的轴突,因为髓鞘的周期性会在散射模式中产生明显的峰。在这里,我们表明小角 X 射线散射(SAXS)可用于检测有髓鞘的、轴突特异性的纤维交叉。我们首先使用人类胼胝体条带证明了该方法的能力,以创建人工双交叉和三交叉纤维结构,然后将该方法应用于小鼠、猪、恒河猴和人类大脑。我们将结果与偏光成像(3D-PLI)、示踪实验以及有时无法检测到交叉的扩散 MRI 输出进行了比较。鉴于其特异性、三维采样能力和高分辨率,SAXS 可以作为验证使用扩散 MRI 以及基于显微镜的方法得出的纤维方向的真实值。

意义声明

为了研究我们大脑中的神经纤维是如何相互连接的,科学家们需要可视化它们的轨迹,这些轨迹经常相互交叉。在这里,我们展示了小角 X 射线散射(SAXS)的独特能力,无需标记即可研究这些纤维交叉,利用 SAXS 对髓鞘的特异性 - 包裹在神经纤维周围的绝缘鞘。我们使用 SAXS 检测双交叉和三交叉纤维,并揭示了小鼠、猪、恒河猴和人类大脑中错综复杂的交叉。这种非破坏性方法可以揭示复杂的纤维轨迹,并验证其他不太特定的成像方法(例如 MRI 或显微镜),以实现对动物和人类大脑神经元连接的准确映射。

相似文献

1
Imaging crossing fibers in mouse, pig, monkey, and human brain using small-angle X-ray scattering.
Acta Biomater. 2023 Jul 1;164:317-331. doi: 10.1016/j.actbio.2023.04.029. Epub 2023 Apr 23.
3
Scattered Light Imaging: Resolving the substructure of nerve fiber crossings in whole brain sections with micrometer resolution.
Neuroimage. 2021 Jun;233:117952. doi: 10.1016/j.neuroimage.2021.117952. Epub 2021 Mar 11.
4
Retrieving neuronal orientations using 3D scanning SAXS and comparison with diffusion MRI.
Neuroimage. 2020 Jan 1;204:116214. doi: 10.1016/j.neuroimage.2019.116214. Epub 2019 Sep 27.
6
Axon diameter mapping in crossing fibers with diffusion MRI.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):82-9. doi: 10.1007/978-3-642-23629-7_11.
7
Autofluorescence enhancement for label-free imaging of myelinated fibers in mammalian brains.
Sci Rep. 2021 Apr 13;11(1):8038. doi: 10.1038/s41598-021-86092-7.
9
Small-angle X-ray scattering characteristics of mouse brain: Planar imaging measurements and tomographic imaging simulations.
PLoS One. 2017 Oct 31;12(10):e0186451. doi: 10.1371/journal.pone.0186451. eCollection 2017.

引用本文的文献

1
Micron-resolution fiber mapping in histology independent of sample preparation.
bioRxiv. 2025 Mar 14:2024.03.26.586745. doi: 10.1101/2024.03.26.586745.
2
Small-angle scattering tensor tomography algorithm for robust reconstruction of complex textures.
Acta Crystallogr A Found Adv. 2023 Nov 1;79(Pt 6):515-526. doi: 10.1107/S205327332300863X. Epub 2023 Oct 19.

本文引用的文献

1
APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes.
Nature. 2022 Nov;611(7937):769-779. doi: 10.1038/s41586-022-05439-w. Epub 2022 Nov 16.
2
Insights from the IronTract challenge: Optimal methods for mapping brain pathways from multi-shell diffusion MRI.
Neuroimage. 2022 Aug 15;257:119327. doi: 10.1016/j.neuroimage.2022.119327. Epub 2022 May 26.
4
Young CSF restores oligodendrogenesis and memory in aged mice via Fgf17.
Nature. 2022 May;605(7910):509-515. doi: 10.1038/s41586-022-04722-0. Epub 2022 May 11.
5
Post mortem mapping of connectional anatomy for the validation of diffusion MRI.
Neuroimage. 2022 Aug 1;256:119146. doi: 10.1016/j.neuroimage.2022.119146. Epub 2022 Mar 25.
6
Scatterometry Measurements With Scattered Light Imaging Enable New Insights Into the Nerve Fiber Architecture of the Brain.
Front Neuroanat. 2021 Nov 29;15:767223. doi: 10.3389/fnana.2021.767223. eCollection 2021.
7
Ex vivo MRI atlas of the human medial temporal lobe: characterizing neurodegeneration due to tau pathology.
Acta Neuropathol Commun. 2021 Oct 24;9(1):173. doi: 10.1186/s40478-021-01275-7.
9
High-throughput mapping of a whole rhesus monkey brain at micrometer resolution.
Nat Biotechnol. 2021 Dec;39(12):1521-1528. doi: 10.1038/s41587-021-00986-5. Epub 2021 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验