Suppr超能文献

基于模型的二维线性组合建模对氢磁共振波谱数据进行频率和相位校正

Model-based frequency-and-phase correction of H MRS data with 2D linear-combination modeling.

作者信息

Simicic Dunja, Zöllner Helge J, Davies-Jenkins Christopher W, Hupfeld Kathleen E, Edden Richard A E, Oeltzschner Georg

机构信息

Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.

F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States.

出版信息

bioRxiv. 2024 Mar 29:2024.03.26.586804. doi: 10.1101/2024.03.26.586804.

Abstract

PURPOSE

Retrospective frequency-and-phase correction (FPC) methods attempt to remove frequency-and-phase variations between transients to improve the quality of the averaged MR spectrum. However, traditional FPC methods like spectral registration struggle at low SNR. Here, we propose a method that directly integrates FPC into a two-dimensional linear-combination model (2D-LCM) of individual transients ('model-based FPC'). We investigated how model-based FPC performs compared to the traditional approach, i.e., spectral registration followed by 1D-LCM in estimating frequency-and-phase drifts and, consequentially, metabolite level estimates.

METHODS

We created synthetic in-vivo-like 64-transient short-TE sLASER datasets with 100 noise realizations at 5 SNR levels and added randomly sampled frequency and phase variations. We then used this synthetic dataset to compare the performance of 2D-LCM with the traditional approach (spectral registration, averaging, then 1D-LCM). Outcome measures were the frequency/phase/amplitude errors, the standard deviation of those ground-truth errors, and amplitude Cramér Rao Lower Bounds (CRLBs). We further tested the proposed method on publicly available in-vivo short-TE PRESS data.

RESULTS

2D-LCM estimates (and accounts for) frequency-and-phase variations directly from uncorrected data with equivalent or better fidelity than the conventional approach. Furthermore, 2D-LCM metabolite amplitude estimates were at least as accurate, precise, and certain as the conventionally derived estimates. 2D-LCM estimation of frequency and phase correction and amplitudes performed substantially better at low-to-very-low SNR.

CONCLUSION

Model-based FPC with 2D linear-combination modeling is feasible and has great potential to improve metabolite level estimation for conventional and dynamic MRS data, especially for low-SNR conditions, e.g., long TEs or strong diffusion weighting.

摘要

目的

回顾性频率和相位校正(FPC)方法试图消除瞬态之间的频率和相位变化,以提高平均磁共振波谱的质量。然而,像频谱配准这样的传统FPC方法在低信噪比下效果不佳。在此,我们提出一种方法,将FPC直接集成到单个瞬态的二维线性组合模型(2D-LCM)中(“基于模型的FPC”)。我们研究了基于模型的FPC与传统方法(即频谱配准后接一维LCM)在估计频率和相位漂移以及代谢物水平估计方面的性能对比。

方法

我们创建了类似体内的64瞬态短回波时间sLASER合成数据集,在5个信噪比水平下有100次噪声实现,并添加了随机采样的频率和相位变化。然后,我们使用这个合成数据集比较2D-LCM与传统方法(频谱配准、平均,然后一维LCM)的性能。结果指标包括频率/相位/幅度误差、这些真实误差的标准差以及幅度克拉美罗下界(CRLBs)。我们还在公开可用的体内短回波时间PRESS数据上测试了所提出的方法。

结果

2D-LCM直接从未校正数据中估计(并考虑)频率和相位变化,其保真度与传统方法相当或更好。此外,2D-LCM代谢物幅度估计至少与传统推导的估计一样准确、精确且可靠。在低至极低信噪比下,2D-LCM对频率和相位校正以及幅度的估计性能显著更好。

结论

基于二维线性组合建模的基于模型的FPC是可行的,并且在改善传统和动态磁共振波谱数据的代谢物水平估计方面具有巨大潜力,特别是对于低信噪比条件,例如长回波时间或强扩散加权情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9734/10996641/38f52ff91353/nihpp-2024.03.26.586804v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验