Suppr超能文献

基于模型的二维线性组合建模的 H MRS 数据的频率和相位校正。

Model-based frequency-and-phase correction of H MRS data with 2D linear-combination modeling.

机构信息

Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.

出版信息

Magn Reson Med. 2024 Nov;92(5):2222-2236. doi: 10.1002/mrm.30209. Epub 2024 Jul 10.

Abstract

PURPOSE

Retrospective frequency-and-phase correction (FPC) methods attempt to remove frequency-and-phase variations between transients to improve the quality of the averaged MR spectrum. However, traditional FPC methods like spectral registration struggle at low SNR. Here, we propose a method that directly integrates FPC into a 2D linear-combination model (2D-LCM) of individual transients ("model-based FPC"). We investigated how model-based FPC performs compared to the traditional approach, i.e., spectral registration followed by 1D-LCM in estimating frequency-and-phase drifts and, consequentially, metabolite level estimates.

METHODS

We created synthetic in-vivo-like 64-transient short-TE sLASER datasets with 100 noise realizations at 5 SNR levels and added randomly sampled frequency and phase variations. We then used this synthetic dataset to compare the performance of 2D-LCM with the traditional approach (spectral registration, averaging, then 1D-LCM). Outcome measures were the frequency/phase/amplitude errors, the SD of those ground-truth errors, and amplitude Cramér Rao lower bounds (CRLBs). We further tested the proposed method on publicly available in-vivo short-TE PRESS data.

RESULTS

2D-LCM estimates (and accounts for) frequency-and-phase variations directly from uncorrected data with equivalent or better fidelity than the conventional approach. Furthermore, 2D-LCM metabolite amplitude estimates were at least as accurate, precise, and certain as the conventionally derived estimates. 2D-LCM estimation of FPC and amplitudes performed substantially better at low-to-very-low SNR.

CONCLUSION

Model-based FPC with 2D linear-combination modeling is feasible and has great potential to improve metabolite level estimation for conventional and dynamic MRS data, especially for low-SNR conditions, for example, long TEs or strong diffusion weighting.

摘要

目的

回顾性频率和相位校正(FPC)方法试图去除瞬变之间的频率和相位变化,以提高平均磁共振光谱的质量。然而,像谱配准这样的传统 FPC 方法在低 SNR 下表现不佳。在这里,我们提出了一种将 FPC 直接集成到个体瞬变的 2D 线性组合模型(2D-LCM)中的方法(基于模型的 FPC)。我们研究了基于模型的 FPC 在估计频率和相位漂移方面的性能,以及由此产生的代谢物水平估计值,与传统方法(谱配准,然后进行 1D-LCM)相比如何。

方法

我们创建了具有 100 个噪声实现的 64 个瞬态短 TE sLASER 数据集,具有 5 个 SNR 水平和随机采样的频率和相位变化。然后,我们使用这个合成数据集来比较 2D-LCM 与传统方法(谱配准、平均、然后 1D-LCM)的性能。结果测量是频率/相位/幅度误差、这些真实误差的标准差以及幅度克拉美罗下限(CRLB)。我们还在公开可用的体内短 TE PRESS 数据上测试了所提出的方法。

结果

2D-LCM 直接从未经校正的数据中估计(并考虑到)频率和相位变化,其保真度与传统方法相当或更好。此外,2D-LCM 代谢物幅度估计与传统方法得出的估计值一样准确、精确和可靠。在低至非常低的 SNR 条件下,2D-LCM 的 FPC 和幅度估计性能要好得多。

结论

基于模型的 FPC 与 2D 线性组合建模是可行的,并且具有很大的潜力来改善传统和动态 MRS 数据的代谢物水平估计,特别是对于低 SNR 条件,例如长 TE 或强扩散加权。

相似文献

1
Model-based frequency-and-phase correction of H MRS data with 2D linear-combination modeling.
Magn Reson Med. 2024 Nov;92(5):2222-2236. doi: 10.1002/mrm.30209. Epub 2024 Jul 10.
2
Model-based frequency-and-phase correction of H MRS data with 2D linear-combination modeling.
bioRxiv. 2024 Mar 29:2024.03.26.586804. doi: 10.1101/2024.03.26.586804.
3
Simultaneous multi-transient linear-combination modeling of MRS data improves uncertainty estimation.
Magn Reson Med. 2024 Sep;92(3):916-925. doi: 10.1002/mrm.30110. Epub 2024 Apr 22.
4
Simultaneous multi-transient linear-combination modeling of MRS data improves uncertainty estimation.
bioRxiv. 2024 Jan 11:2023.11.01.565164. doi: 10.1101/2023.11.01.565164.
5
Frequency and phase correction for multiplexed edited MRS of GABA and glutathione.
Magn Reson Med. 2018 Jul;80(1):21-28. doi: 10.1002/mrm.27027. Epub 2017 Dec 7.
7
MR spectroscopy frequency and phase correction using convolutional neural networks.
Magn Reson Med. 2022 Apr;87(4):1700-1710. doi: 10.1002/mrm.29103. Epub 2021 Dec 21.
8
Comparison of different linear-combination modeling algorithms for short-TE proton spectra.
NMR Biomed. 2021 Apr;34(4):e4482. doi: 10.1002/nbm.4482. Epub 2021 Feb 2.
9
Magnetic Resonance Spectroscopy Spectral Registration Using Deep Learning.
J Magn Reson Imaging. 2024 Mar;59(3):964-975. doi: 10.1002/jmri.28868. Epub 2023 Jul 4.
10
Model-informed unsupervised deep learning approaches to frequency and phase correction of MRS signals.
Magn Reson Med. 2023 Mar;89(3):1221-1236. doi: 10.1002/mrm.29498. Epub 2022 Nov 11.

引用本文的文献

1
A data-driven algorithm to determine H-MRS basis set composition.
bioRxiv. 2025 Feb 23:2024.09.11.612503. doi: 10.1101/2024.09.11.612503.

本文引用的文献

1
Simultaneous multi-transient linear-combination modeling of MRS data improves uncertainty estimation.
Magn Reson Med. 2024 Sep;92(3):916-925. doi: 10.1002/mrm.30110. Epub 2024 Apr 22.
2
Universal dynamic fitting of magnetic resonance spectroscopy.
Magn Reson Med. 2024 Jun;91(6):2229-2246. doi: 10.1002/mrm.30001. Epub 2024 Jan 24.
3
Diffusion-weighted MR spectroscopy: Consensus, recommendations, and resources from acquisition to modeling.
Magn Reson Med. 2024 Mar;91(3):860-885. doi: 10.1002/mrm.29877. Epub 2023 Nov 9.
5
Event-related functional magnetic resonance spectroscopy.
Neuroimage. 2023 Aug 1;276:120194. doi: 10.1016/j.neuroimage.2023.120194. Epub 2023 May 26.
6
Model-informed unsupervised deep learning approaches to frequency and phase correction of MRS signals.
Magn Reson Med. 2023 Mar;89(3):1221-1236. doi: 10.1002/mrm.29498. Epub 2022 Nov 11.
7
Neurometabolic timecourse of healthy aging.
Neuroimage. 2022 Dec 1;264:119740. doi: 10.1016/j.neuroimage.2022.119740. Epub 2022 Nov 8.
9
Community-Organized Resources for Reproducible MRS Data Analysis.
Magn Reson Med. 2022 Nov;88(5):1959-1961. doi: 10.1002/mrm.29387. Epub 2022 Jul 18.
10
MRSCloud: A cloud-based MRS tool for basis set simulation.
Magn Reson Med. 2022 Nov;88(5):1994-2004. doi: 10.1002/mrm.29370. Epub 2022 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验