Suppr超能文献

同时进行多瞬态线性组合建模可提高 MRS 数据的不确定性估计。

Simultaneous multi-transient linear-combination modeling of MRS data improves uncertainty estimation.

机构信息

Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.

出版信息

Magn Reson Med. 2024 Sep;92(3):916-925. doi: 10.1002/mrm.30110. Epub 2024 Apr 22.

Abstract

PURPOSE

The interest in applying and modeling dynamic MRS has recently grown. Two-dimensional modeling yields advantages for the precision of metabolite estimation in interrelated MRS data. However, it is unknown whether including all transients simultaneously in a 2D model without averaging (presuming a stable signal) performs similarly to one-dimensional (1D) modeling of the averaged spectrum. Therefore, we systematically investigated the accuracy, precision, and uncertainty estimation of both described model approaches.

METHODS

Monte Carlo simulations of synthetic MRS data were used to compare the accuracy and uncertainty estimation of simultaneous 2D multitransient linear-combination modeling (LCM) with 1D-LCM of the average. A total of 2,500 data sets per condition with different noise representations of a 64-transient MRS experiment at six signal-to-noise levels for two separate spin systems (scyllo-inositol and gamma-aminobutyric acid) were analyzed. Additional data sets with different levels of noise correlation were also analyzed. Modeling accuracy was assessed by determining the relative bias of the estimated amplitudes against the ground truth, and modeling precision was determined by SDs and Cramér-Rao lower bounds (CRLBs).

RESULTS

Amplitude estimates for 1D- and 2D-LCM agreed well and showed a similar level of bias compared with the ground truth. Estimated CRLBs agreed well between both models and with ground-truth CRLBs. For correlated noise, the estimated CRLBs increased with the correlation strength for the 1D-LCM but remained stable for the 2D-LCM.

CONCLUSION

Our results indicate that the model performance of 2D multitransient LCM is similar to averaged 1D-LCM. This validation on a simplified scenario serves as a necessary basis for further applications of 2D modeling.

摘要

目的

应用和建模动态磁共振波谱(MRS)的兴趣最近有所增加。二维建模在相关 MRS 数据中代谢物估计的精度方面具有优势。然而,目前尚不清楚在没有平均(假设信号稳定)的情况下同时将所有瞬态包含在 2D 模型中是否与平均谱的一维(1D)建模表现相同。因此,我们系统地研究了这两种模型方法的准确性、精密度和不确定性估计。

方法

使用合成 MRS 数据的蒙特卡罗模拟来比较同时进行的 2D 多瞬态线性组合建模(LCM)与 1D-LCM 平均的准确性和不确定性估计。对于两个单独的自旋系统(scyllo-肌醇和γ-氨基丁酸)的 64 个瞬态 MRS 实验,在六个信噪比水平下,对每种条件下的 2500 个数据集进行了不同噪声表示的分析。还分析了具有不同噪声相关性水平的其他数据集。通过确定估计幅度相对于真实幅度的相对偏差来评估建模准确性,通过标准偏差(SD)和克拉美罗-劳下界(CRLB)来确定建模精度。

结果

1D-和 2D-LCM 的幅度估计值与真实值吻合良好,且与真实值相比具有相似的偏差水平。两种模型之间以及与真实值的估计 CRLB 吻合良好。对于相关噪声,1D-LCM 的估计 CRLB 随着相关性强度的增加而增加,但 2D-LCM 的 CRLB 保持稳定。

结论

我们的结果表明,2D 多瞬态 LCM 的模型性能与平均 1D-LCM 相似。在简化场景下的验证为二维建模的进一步应用提供了必要的基础。

相似文献

引用本文的文献

本文引用的文献

1
Universal dynamic fitting of magnetic resonance spectroscopy.磁共振波谱的通用动态拟合。
Magn Reson Med. 2024 Jun;91(6):2229-2246. doi: 10.1002/mrm.30001. Epub 2024 Jan 24.
4
Event-related functional magnetic resonance spectroscopy.事件相关功能磁共振波谱。
Neuroimage. 2023 Aug 1;276:120194. doi: 10.1016/j.neuroimage.2023.120194. Epub 2023 May 26.
8
NIfTI-MRS: A standard data format for magnetic resonance spectroscopy.NIfTI-MRS:磁共振波谱的标准数据格式。
Magn Reson Med. 2022 Dec;88(6):2358-2370. doi: 10.1002/mrm.29418. Epub 2022 Sep 11.
9
MRSCloud: A cloud-based MRS tool for basis set simulation.MRSCloud:一种基于云的用于基组模拟的 MRS 工具。
Magn Reson Med. 2022 Nov;88(5):1994-2004. doi: 10.1002/mrm.29370. Epub 2022 Jul 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验