Suppr超能文献

用于绘制影响基因共表达联合差异网络的QTL图谱的光谱框架。

A spectral framework to map QTLs affecting joint differential networks of gene co-expression.

作者信息

Hu Jiaxin, Weber Jesse N, Fuess Lauren E, Steinel Natalie C, Bolnick Daniel I, Wang Miaoyan

机构信息

Department of Statistics, University of Wisconsin-Madison.

Department of Integrative Biology, University of Wisconsin-Madison.

出版信息

bioRxiv. 2024 Mar 30:2024.03.29.587398. doi: 10.1101/2024.03.29.587398.

Abstract

Studying the mechanisms underlying the genotype-phenotype association is crucial in genetics. Gene expression studies have deepened our understanding of the genotype → expression → phenotype mechanisms. However, traditional expression quantitative trait loci (eQTL) methods often overlook the critical role of gene co-expression networks in translating genotype into phenotype. This gap highlights the need for more powerful statistical methods to analyze genotype → network → phenotype mechanism. Here, we develop a network-based method, called snQTL, to map quantitative trait loci affecting gene co-expression networks. Our approach tests the association between genotypes and joint differential networks of gene co-expression via a tensor-based spectral statistics, thereby overcoming the ubiquitous multiple testing challenges in existing methods. We demonstrate the effectiveness of snQTL in the analysis of three-spined stickleback () data. Compared to conventional methods, our method snQTL uncovers chromosomal regions affecting gene co-expression networks, including one strong candidate gene that would have been missed by traditional eQTL analyses. Our framework suggests the limitation of current approaches and offers a powerful network-based tool for functional loci discoveries.

摘要

研究基因型与表型关联背后的机制在遗传学中至关重要。基因表达研究加深了我们对基因型→表达→表型机制的理解。然而,传统的表达数量性状位点(eQTL)方法常常忽视基因共表达网络在将基因型转化为表型过程中的关键作用。这一差距凸显了需要更强大的统计方法来分析基因型→网络→表型机制。在此,我们开发了一种基于网络的方法,称为snQTL,用于定位影响基因共表达网络的数量性状位点。我们的方法通过基于张量的谱统计检验基因型与基因共表达的联合差异网络之间的关联,从而克服了现有方法中普遍存在的多重检验挑战。我们证明了snQTL在三刺鱼()数据的分析中的有效性。与传统方法相比,我们的方法snQTL揭示了影响基因共表达网络的染色体区域,包括一个传统eQTL分析会遗漏的强候选基因。我们的框架揭示了当前方法的局限性,并为功能位点发现提供了一个强大的基于网络的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7769/10996691/725981ae356a/nihpp-2024.03.29.587398v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验