文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在不确定性下觅食遵循边际价值定理并对环境表征进行贝叶斯更新。

Foraging Under Uncertainty Follows the Marginal Value Theorem with Bayesian Updating of Environment Representations.

作者信息

Webb James, Steffan Paul, Hayden Benjamin Y, Lee Daeyeol, Kemere Caleb, McGinley Matthew

机构信息

Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.

Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.

出版信息

bioRxiv. 2024 Mar 31:2024.03.30.587253. doi: 10.1101/2024.03.30.587253.


DOI:10.1101/2024.03.30.587253
PMID:38585964
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10996644/
Abstract

Foraging theory has been a remarkably successful approach to understanding the behavior of animals in many contexts. In patch-based foraging contexts, the marginal value theorem (MVT) shows that the optimal strategy is to leave a patch when the marginal rate of return declines to the average for the environment. However, the MVT is only valid in deterministic environments whose statistics are known to the forager; naturalistic environments seldom meet these strict requirements. As a result, the strategies used by foragers in naturalistic environments must be empirically investigated. We developed a novel behavioral task and a corresponding computational framework for studying patch-leaving decisions in head-fixed and freely moving mice. We varied between-patch travel time, as well as within-patch reward depletion rate, both deterministically and stochastically. We found that mice adopt patch residence times in a manner consistent with the MVT and not explainable by simple ethologically motivated heuristic strategies. Critically, behavior was best accounted for by a modified form of the MVT wherein environment representations were updated based on local variations in reward timing, captured by a Bayesian estimator and dynamic prior. Thus, we show that mice can strategically attend to, learn from, and exploit task structure on multiple timescales simultaneously, thereby efficiently foraging in volatile environments. The results provide a foundation for applying the systems neuroscience toolkit in freely moving and head-fixed mice to understand the neural basis of foraging under uncertainty.

摘要

觅食理论在理解动物在多种情境下的行为方面是一种非常成功的方法。在基于斑块的觅食情境中,边际价值定理(MVT)表明,最优策略是当边际回报率下降到环境平均水平时离开一个斑块。然而,MVT仅在觅食者已知其统计数据的确定性环境中有效;自然环境很少满足这些严格要求。因此,必须通过实证研究自然环境中觅食者所使用的策略。我们开发了一种新颖的行为任务和相应的计算框架,用于研究固定头部和自由移动小鼠的斑块离开决策。我们以确定性和随机性方式改变斑块间旅行时间以及斑块内奖励消耗率。我们发现,小鼠采用的斑块停留时间与MVT一致,且无法用简单的基于行为学动机的启发式策略来解释。至关重要的是,行为最好由MVT的一种修改形式来解释,其中环境表征基于奖励时机的局部变化进行更新,由贝叶斯估计器和动态先验捕捉。因此,我们表明小鼠能够在多个时间尺度上同时策略性地关注、学习并利用任务结构,从而在多变的环境中高效觅食。这些结果为在自由移动和固定头部的小鼠中应用系统神经科学工具包以理解不确定性下觅食的神经基础奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/542e/10996644/755b1cc7dbea/nihpp-2024.03.30.587253v1-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/542e/10996644/d59e061cc79b/nihpp-2024.03.30.587253v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/542e/10996644/8a15ad08825a/nihpp-2024.03.30.587253v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/542e/10996644/166163199368/nihpp-2024.03.30.587253v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/542e/10996644/54ba70b4b32f/nihpp-2024.03.30.587253v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/542e/10996644/2801b7d627c7/nihpp-2024.03.30.587253v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/542e/10996644/755b1cc7dbea/nihpp-2024.03.30.587253v1-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/542e/10996644/d59e061cc79b/nihpp-2024.03.30.587253v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/542e/10996644/8a15ad08825a/nihpp-2024.03.30.587253v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/542e/10996644/166163199368/nihpp-2024.03.30.587253v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/542e/10996644/54ba70b4b32f/nihpp-2024.03.30.587253v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/542e/10996644/2801b7d627c7/nihpp-2024.03.30.587253v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/542e/10996644/755b1cc7dbea/nihpp-2024.03.30.587253v1-f0006.jpg

相似文献

[1]
Foraging Under Uncertainty Follows the Marginal Value Theorem with Bayesian Updating of Environment Representations.

bioRxiv. 2024-3-31

[2]
Foraging animals use dynamic Bayesian updating to model meta-uncertainty in environment representations.

PLoS Comput Biol. 2025-4-30

[3]
Rat Anterior Cingulate Cortex Continuously Signals Decision Variables in a Patch Foraging Task.

J Neurosci. 2022-7-20

[4]
Uncertainty drives deviations in normative foraging decision strategies.

J R Soc Interface. 2021-7

[5]
Foraging optimally in social neuroscience: computations and methodological considerations.

Soc Cogn Affect Neurosci. 2021-8-6

[6]
No matter what you do, travel is travel in visual foraging.

Vision Res. 2024-11

[7]
Unpacking chimpanzee (Pan troglodytes) patch use: Do individuals respond to food patches as predicted by the marginal value theorem?

Am J Primatol. 2020-12

[8]
Social resource foraging is guided by the principles of the Marginal Value Theorem.

Sci Rep. 2017-9-12

[9]
Sex differences in patch-leaving foraging decisions in rats.

bioRxiv. 2023-10-9

[10]
Sex differences in patch-leaving foraging decisions in rats.

Oxf Open Neurosci. 2023-10-17

本文引用的文献

[1]
Maladaptive explore/exploit trade-offs in schizophrenia.

Trends Neurosci. 2023-5

[2]
Mechanisms of adjustments to different types of uncertainty in the reward environment across mice and monkeys.

Cogn Affect Behav Neurosci. 2023-6

[3]
Confidence reflects a noisy decision reliability estimate.

Nat Hum Behav. 2023-1

[4]
Rat Anterior Cingulate Cortex Continuously Signals Decision Variables in a Patch Foraging Task.

J Neurosci. 2022-7-20

[5]
Mice exhibit stochastic and efficient action switching during probabilistic decision making.

Proc Natl Acad Sci U S A. 2022-4-12

[6]
Serotonin neurons modulate learning rate through uncertainty.

Curr Biol. 2022-2-7

[7]
Uncertainty drives deviations in normative foraging decision strategies.

J R Soc Interface. 2021-7

[8]
Application of the hierarchical bootstrap to multi-level data in neuroscience.

Neuron Behav Data Anal Theory. 2020

[9]
Behavior needs neural variability.

Neuron. 2021-3-3

[10]
Parametric shift from rational to irrational decisions in mice.

Sci Rep. 2021-1-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索