Suppr超能文献

通过白质高信号连接性评估增强认知功能预测:对3485名记忆门诊患者的多中心病变网络映射分析

Enhancing Cognitive Performance Prediction through White Matter Hyperintensity Connectivity Assessment: A Multicenter Lesion Network Mapping Analysis of 3,485 Memory Clinic Patients.

作者信息

Petersen Marvin, Coenen Mirthe, DeCarli Charles, De Luca Alberto, van der Lelij Ewoud, Barkhof Frederik, Benke Thomas, Chen Christopher P L H, Dal-Bianco Peter, Dewenter Anna, Duering Marco, Enzinger Christian, Ewers Michael, Exalto Lieza G, Fletcher Evan F, Franzmeier Nicolai, Hilal Saima, Hofer Edith, Koek Huiberdina L, Maier Andrea B, Maillard Pauline M, McCreary Cheryl R, Papma Janne M, Pijnenburg Yolande A L, Schmidt Reinhold, Smith Eric E, Steketee Rebecca M E, van den Berg Esther, van der Flier Wiesje M, Venkatraghavan Vikram, Venketasubramanian Narayanaswamy, Vernooij Meike W, Wolters Frank J, Xu Xin, Horn Andreas, Patil Kaustubh R, Eickhoff Simon B, Thomalla Götz, Biesbroek J Matthijs, Biessels Geert Jan, Cheng Bastian

机构信息

Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

University Medical Center Utrecht Brain Center, Utrecht, The Netherlands.

出版信息

medRxiv. 2024 Apr 11:2024.03.28.24305007. doi: 10.1101/2024.03.28.24305007.

Abstract

INTRODUCTION

White matter hyperintensities of presumed vascular origin (WMH) are associated with cognitive impairment and are a key imaging marker in evaluating cognitive health. However, WMH volume alone does not fully account for the extent of cognitive deficits and the mechanisms linking WMH to these deficits remain unclear. We propose that lesion network mapping (LNM), enables to infer if brain networks are connected to lesions, and could be a promising technique for enhancing our understanding of the role of WMH in cognitive disorders. Our study employed this approach to test the following hypotheses: (1) LNM-informed markers surpass WMH volumes in predicting cognitive performance, and (2) WMH contributing to cognitive impairment map to specific brain networks.

METHODS & RESULTS: We analyzed cross-sectional data of 3,485 patients from 10 memory clinic cohorts within the Meta VCI Map Consortium, using harmonized test results in 4 cognitive domains and WMH segmentations. WMH segmentations were registered to a standard space and mapped onto existing normative structural and functional brain connectome data. We employed LNM to quantify WMH connectivity across 480 atlas-based gray and white matter regions of interest (ROI), resulting in ROI-level structural and functional LNM scores. The capacity of total and regional WMH volumes and LNM scores in predicting cognitive function was compared using ridge regression models in a nested cross-validation. LNM scores predicted performance in three cognitive domains (attention and executive function, information processing speed, and verbal memory) significantly better than WMH volumes. LNM scores did not improve prediction for language functions. ROI-level analysis revealed that higher LNM scores, representing greater disruptive effects of WMH on regional connectivity, in gray and white matter regions of the dorsal and ventral attention networks were associated with lower cognitive performance.

CONCLUSION

Measures of WMH-related brain network connectivity significantly improve the prediction of current cognitive performance in memory clinic patients compared to WMH volume as a traditional imaging marker of cerebrovascular disease. This highlights the crucial role of network effects, particularly in attentionrelated brain regions, improving our understanding of vascular contributions to cognitive impairment. Moving forward, refining WMH information with connectivity data could contribute to patient-tailored therapeutic interventions and facilitate the identification of subgroups at risk of cognitive disorders.

摘要

引言

假定血管源性白质高信号(WMH)与认知障碍相关,是评估认知健康的关键影像学标志物。然而,仅WMH体积并不能完全解释认知缺陷的程度,且WMH与这些缺陷之间的联系机制仍不清楚。我们提出,病变网络映射(LNM)能够推断脑网络是否与病变相连,可能是一种有助于增强我们对WMH在认知障碍中作用理解的有前景的技术。我们的研究采用这种方法来检验以下假设:(1)基于LNM的标志物在预测认知表现方面优于WMH体积;(2)导致认知障碍的WMH映射到特定的脑网络。

方法与结果

我们分析了来自Meta VCI Map联盟中10个记忆诊所队列的3485例患者的横断面数据,使用了4个认知领域的统一测试结果和WMH分割数据。将WMH分割数据配准到标准空间,并映射到现有的规范结构和功能脑连接组数据上。我们使用LNM来量化跨越480个基于图谱的灰质和白质感兴趣区域(ROI)的WMH连通性,得出ROI水平的结构和功能LNM分数。在嵌套交叉验证中,使用岭回归模型比较了总WMH体积、区域WMH体积和LNM分数预测认知功能的能力。LNM分数在预测三个认知领域(注意力和执行功能、信息处理速度和言语记忆)的表现方面显著优于WMH体积。LNM分数对语言功能的预测没有改善。ROI水平分析显示,背侧和腹侧注意网络的灰质和白质区域中,较高的LNM分数代表WMH对区域连通性的更大破坏作用,与较低的认知表现相关。

结论

与作为脑血管疾病传统影像学标志物的WMH体积相比,WMH相关脑网络连通性的测量方法显著改善了对记忆诊所患者当前认知表现的预测。这突出了网络效应的关键作用, 特别是在与注意力相关的脑区,有助于增进我们对血管因素导致认知障碍的理解。展望未来,用连通性数据完善WMH信息可能有助于制定针对患者的治疗干预措施,并有助于识别有认知障碍风险的亚组。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3944/11017918/f23e2daad499/nihpp-2024.03.28.24305007v3-f0001.jpg

相似文献

6
Estimated Regional White Matter Hyperintensity Burden, Resting State Functional Connectivity, and Cognitive Functions in Older Adults.
Am J Geriatr Psychiatry. 2022 Mar;30(3):269-280. doi: 10.1016/j.jagp.2021.07.015. Epub 2021 Jul 29.
8
Cognitive abilities, brain white matter hyperintensity volume, and structural network connectivity in older age.
Hum Brain Mapp. 2018 Feb;39(2):622-632. doi: 10.1002/hbm.23857. Epub 2017 Nov 14.

本文引用的文献

1
Julearn: an easy-to-use library for leakage-free evaluation and inspection of ML models.
GigaByte. 2024 Mar 7;2024:gigabyte113. doi: 10.46471/gigabyte.113. eCollection 2024.
3
Mapping the Relationship of White Matter Lesions to Depression in Multiple Sclerosis.
Biol Psychiatry. 2024 Jun 15;95(12):1072-1080. doi: 10.1016/j.biopsych.2023.11.010. Epub 2023 Nov 18.
4
Whole-brain, gray, and white matter time-locked functional signal changes with simple tasks and model-free analysis.
Proc Natl Acad Sci U S A. 2023 Oct 17;120(42):e2219666120. doi: 10.1073/pnas.2219666120. Epub 2023 Oct 12.
5
Multiple sclerosis lesions that impair memory map to a connected memory circuit.
J Neurol. 2023 Nov;270(11):5211-5222. doi: 10.1007/s00415-023-11907-8. Epub 2023 Aug 2.
6
Neuroimaging standards for research into small vessel disease-advances since 2013.
Lancet Neurol. 2023 Jul;22(7):602-618. doi: 10.1016/S1474-4422(23)00131-X. Epub 2023 May 23.
8
Latent disconnectome prediction of long-term cognitive-behavioural symptoms in stroke.
Brain. 2023 May 2;146(5):1963-1978. doi: 10.1093/brain/awad013.
9
Lead-DBS v3.0: Mapping deep brain stimulation effects to local anatomy and global networks.
Neuroimage. 2023 Mar;268:119862. doi: 10.1016/j.neuroimage.2023.119862. Epub 2023 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验