Suppr超能文献

脑卒中患者长期认知行为症状的潜在连接组学预测。

Latent disconnectome prediction of long-term cognitive-behavioural symptoms in stroke.

机构信息

Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, 33076, France.

Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, 75006, France.

出版信息

Brain. 2023 May 2;146(5):1963-1978. doi: 10.1093/brain/awad013.

Abstract

Stroke significantly impacts the quality of life. However, the long-term cognitive evolution in stroke is poorly predictable at the individual level. There is an urgent need to better predict long-term symptoms based on acute clinical neuroimaging data. Previous works have demonstrated a strong relationship between the location of white matter disconnections and clinical symptoms. However, rendering the entire space of possible disconnection-deficit associations optimally surveyable will allow for a systematic association between brain disconnections and cognitive-behavioural measures at the individual level. Here we present the most comprehensive framework, a composite morphospace of white matter disconnections (disconnectome) to predict neuropsychological scores 1 year after stroke. Linking the latent disconnectome morphospace to neuropsychological outcomes yields biological insights that are available as the first comprehensive atlas of disconnectome-deficit relations across 86 scores-a Neuropsychological White Matter Atlas. Our novel predictive framework, the Disconnectome Symptoms Discoverer, achieved better predictivity performances than six other models, including functional disconnection, lesion topology and volume modelling. Out-of-sample prediction derived from this atlas presented a mean absolute error below 20% and allowed personalize neuropsychological predictions. Prediction on an external cohort achieved an R2 = 0.201 for semantic fluency. In addition, training and testing were replicated on two external cohorts achieving an R2 = 0.18 for visuospatial performance. This framework is available as an interactive web application (http://disconnectomestudio.bcblab.com) to provide the foundations for a new and practical approach to modelling cognition in stroke. We hope our atlas and web application will help to reduce the burden of cognitive deficits on patients, their families and wider society while also helping to tailor future personalized treatment programmes and discover new targets for treatments. We expect our framework's range of assessments and predictive power to increase even further through future crowdsourcing.

摘要

中风显著影响生活质量。然而,个体水平的中风长期认知演变很难预测。迫切需要基于急性临床神经影像学数据更好地预测长期症状。先前的研究表明,白质连接中断的位置与临床症状之间存在很强的关系。然而,使可能的连接缺失关联的整个空间得到最佳调查,将允许在个体水平上对大脑连接与认知行为测量之间进行系统关联。在这里,我们提出了最全面的框架,即白质连接中断的复合形态空间(连接组),以预测中风后 1 年的神经心理学评分。将潜在的连接组形态空间与神经心理学结果联系起来,可以提供生物见解,这是 86 个评分的连接组-神经心理学白质图谱中首次全面的连接组-缺陷关系图谱。我们的新型预测框架,即连接组症状发现器,比其他六个模型(包括功能连接、病变拓扑和体积建模)具有更好的预测性能。该图谱的样本外预测的平均绝对误差低于 20%,并允许进行个性化神经心理学预测。对外部队列的预测达到了语义流畅性的 R2 = 0.201。此外,在两个外部队列上进行的训练和测试分别达到了 R2 = 0.18,用于视空间表现。该框架作为一个交互式网络应用程序(http://disconnectomestudio.bcblab.com)提供了一种新的实用方法的基础,用于对中风中的认知进行建模。我们希望我们的图谱和网络应用程序将有助于减轻认知缺陷对患者、他们的家庭和更广泛的社会的负担,同时也有助于为未来的个性化治疗计划定制和发现新的治疗靶点。我们预计,通过未来的众包,我们的框架的评估范围和预测能力将进一步提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验