Suppr超能文献

基于机器学习的游离皮瓣重建中血管并发症的预测

Prediction of vascular complications in free flap reconstruction with machine learning.

作者信息

Yang Ji-Jin, Liang Yan, Wang Xiao-Hua, Long Wen-Yan, Wei Zhen-Gang, Lu Li-Qin, Li Wen, Shao Xing

机构信息

Nursing Department, Affiliated Hospital of Zunyi Medical University Zunyi, Guizhou, China.

School of Nursing, Zunyi Medical University Zunyi 563000, Guizhou, China.

出版信息

Am J Transl Res. 2024 Mar 15;16(3):817-828. doi: 10.62347/ZXJV8062. eCollection 2024.

Abstract

OBJECTIVE

This study aims to explore the risk factors of vascular complications following free flap reconstruction and to develop a clinical auxiliary assessment tool for predicting vascular complications in patients undergoing free flap reconstruction leveraging machine learning methods.

METHODS

We reviewed the medical data of patients who underwent free flap reconstruction at the Affiliated Hospital of Zunyi Medical University retrospectively from January 1, 2019, to December 31, 2021. Statistical analysis was used to screen risk factors. A training data set was generated and augmented using the synthetic minority oversampling technique. Logistic regression, random forest and neural network, models were trained, using this dataset. The performance of these three predictive models was then evaluated and compared using a test set, with four metrics, area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity.

RESULTS

A total of 570 patients who underwent free flap reconstruction were included in this study, 46 of whom developed postoperative vascular complications. Among the models tested, the neural network model exhibited superior performance on the test set, achieving an AUC of 0.828. Multivariate logistic regression analysis identified that preoperative hemoglobin levels, preoperative fibrinogen levels, operation duration, smoking history, the number of anastomoses, and peripheral vascular injury as statistically significant independent risk factors for vascular complications post-free flap reconstruction. The top five predictive factors in the neural network were fibrinogen content, operation duration, donor site, body mass index (BMI), and platelet count.

CONCLUSION

Hemoglobin levels, fibrinogen levels, operation duration, smoking history, and anastomotic veins are independent risk factors for vascular complications following free flap reconstruction. These risk factors enhance the ability of machine learning models to predict the occurrence of vascular complications and identify high-risk patients. The neural network model outperformed the logistic regression and random forest models, suggesting its potential to aid clinicians in early identification of high-risk patients thereby mitigating patient suffering and improving prognosis.

摘要

目的

本研究旨在探讨游离皮瓣重建术后血管并发症的危险因素,并利用机器学习方法开发一种临床辅助评估工具,以预测游离皮瓣重建患者的血管并发症。

方法

我们回顾性分析了2019年1月1日至2021年12月31日在遵义医科大学附属医院接受游离皮瓣重建手术患者的医疗数据。采用统计分析筛选危险因素。使用合成少数过采样技术生成并扩充训练数据集。使用该数据集训练逻辑回归、随机森林和神经网络模型。然后使用测试集,通过四个指标,即受试者操作特征曲线下面积(AUC)、准确率、敏感性和特异性,对这三种预测模型的性能进行评估和比较。

结果

本研究共纳入570例接受游离皮瓣重建的患者,其中46例发生术后血管并发症。在测试的模型中,神经网络模型在测试集上表现出卓越性能,AUC达到0.828。多因素逻辑回归分析确定,术前血红蛋白水平、术前纤维蛋白原水平、手术时长、吸烟史、吻合口数量和周围血管损伤是游离皮瓣重建术后血管并发症的统计学显著独立危险因素。神经网络中的前五个预测因素是纤维蛋白原含量、手术时长、供区、体重指数(BMI)和血小板计数。

结论

血红蛋白水平、纤维蛋白原水平、手术时长、吸烟史和吻合静脉是游离皮瓣重建术后血管并发症的独立危险因素。这些危险因素增强了机器学习模型预测血管并发症发生的能力,并识别高危患者。神经网络模型优于逻辑回归和随机森林模型,表明其有助于临床医生早期识别高危患者,从而减轻患者痛苦并改善预后。

相似文献

1
Prediction of vascular complications in free flap reconstruction with machine learning.
Am J Transl Res. 2024 Mar 15;16(3):817-828. doi: 10.62347/ZXJV8062. eCollection 2024.
2
Flap failure prediction in microvascular tissue reconstruction using machine learning algorithms.
World J Clin Cases. 2022 Apr 26;10(12):3729-3738. doi: 10.12998/wjcc.v10.i12.3729.
3
Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
Clin Orthop Relat Res. 2020 Jul;478(7):0-1618. doi: 10.1097/CORR.0000000000001251.
5
Application of machine learning model in predicting the likelihood of blood transfusion after hip fracture surgery.
Aging Clin Exp Res. 2023 Nov;35(11):2643-2656. doi: 10.1007/s40520-023-02550-4. Epub 2023 Sep 21.
6
[Risk predictive models of healthcare-seeking delay among imported malaria patients in Jiangsu Province based on the machine learning].
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi. 2023 Jun 28;35(3):225-235. doi: 10.16250/j.32.1374.2022290.
8
A Machine Learning Approach to Predicting Donor Site Complications Following DIEP Flap Harvest.
J Reconstr Microsurg. 2024 Jan;40(1):70-77. doi: 10.1055/a-2071-3368. Epub 2023 Apr 11.
9
Construction of a predictive model for radiation proctitis after radiotherapy for female pelvic tumors based on machine learning.
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2022 Aug 28;47(8):1065-1074. doi: 10.11817/j.issn.1672-7347.2022.220353.
10
[Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2023 Jul;35(7):696-701. doi: 10.3760/cma.j.cn121430-20221219-01104.

引用本文的文献

本文引用的文献

1
Asian race is associated with peripheral arterial disease severity and postoperative outcomes.
J Vasc Surg. 2023 Jul;78(1):175-183.e3. doi: 10.1016/j.jvs.2023.02.015. Epub 2023 Mar 6.
2
Breast Reconstruction Free Flap Failure: Does Platelet Count Matter?
Ann Plast Surg. 2022 Nov 1;89(5):523-528. doi: 10.1097/SAP.0000000000003269.
3
Risk factors associated with early and late free flap complications in head and neck osseous reconstruction.
Eur Arch Otorhinolaryngol. 2023 Feb;280(2):811-817. doi: 10.1007/s00405-022-07619-w. Epub 2022 Sep 3.
4
Flap failure prediction in microvascular tissue reconstruction using machine learning algorithms.
World J Clin Cases. 2022 Apr 26;10(12):3729-3738. doi: 10.12998/wjcc.v10.i12.3729.
5
Preoperative Predictors of Free Flap Failure.
Otolaryngol Head Neck Surg. 2023 Feb;168(2):180-187. doi: 10.1177/01945998221091908.
6
Predicting risk factors that lead to free flap failure and vascular compromise: A single unit experience with 565 free tissue transfers.
J Plast Reconstr Aesthet Surg. 2021 Mar;74(3):512-522. doi: 10.1016/j.bjps.2020.08.126. Epub 2020 Sep 20.
7
Chronic cigarette smoke exposure triggers a vicious cycle of leukocyte and endothelial-mediated oxidant stress that results in vascular dysfunction.
Am J Physiol Heart Circ Physiol. 2020 Jul 1;319(1):H51-H65. doi: 10.1152/ajpheart.00657.2019. Epub 2020 May 15.
8
Development and Evaluation of a Machine Learning Prediction Model for Flap Failure in Microvascular Breast Reconstruction.
Ann Surg Oncol. 2020 Sep;27(9):3466-3475. doi: 10.1245/s10434-020-08307-x. Epub 2020 Mar 9.
9
Effective Combination of Different Surgical Strategies for Deep Sternal Wound Infection and Mediastinitis.
Ann Thorac Cardiovasc Surg. 2019 Apr 20;25(2):102-110. doi: 10.5761/atcs.oa.18-00115. Epub 2018 Nov 7.
10
Association of Smoking Tobacco With Complications in Head and Neck Microvascular Reconstructive Surgery.
JAMA Facial Plast Surg. 2019 Jan 1;21(1):20-26. doi: 10.1001/jamafacial.2018.1176.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验