Suppr超能文献

预测改良根治性乳房切除术乳腺癌患者术后皮瓣坏死风险的列线图的开发与验证

Development and validation of a Nomogram to predict postoperative flap necrosis risk in breast cancer patients undergoing modified radical mastectomy.

作者信息

Peng Yi, Zhang Xin, Wu Jianbin, Wang Hongmei, Huang Xiaoxi

机构信息

Department of Breast Surgery, Fujian Maternity and Child Health Hospital Fuzhou 350001, Fujian, China.

出版信息

Am J Cancer Res. 2025 Mar 15;15(3):1291-1306. doi: 10.62347/DYFF7059. eCollection 2025.

Abstract

BACKGROUND

Flap necrosis is a critical complication following modified radical mastectomy (MRM) for breast cancer (BC). It not only impairs wound healing but also delays postoperative treatment, adversely affecting patient survival rate and the overall quality of life. Thus, developing an accurate prediction model is crucial for early intervention and improving patient prognosis.

OBJECTIVE

To develop and validate a Nomogram model based on Logistic regression to assess the risk of postoperative flap necrosis in BC patients undergoing MRM.

METHODS

A retrospective study was conducted on 605 BC patients who underwent MRM. These patients were stratified into a training group (n=406) and a validation group (n=199) in a 33:67 ratio. Univariate and multivariate Logistic regression analyses were performed to identify risk factors for flap necrosis, and a Nomogram prediction model was subsequently constructed. The model's discriminatory power (assessed via the receiver operating characteristic [ROC] curve), calibration accuracy (evaluated by calibration curve), and clinical benefit (analyzed through decision curve analysis) were comprehensively evaluated. Moreover, essential performance metrics such as sensitivity, specificity, and accuracy were systematically recorded and analyzed.

RESULTS

Nine independent risk factors were identified, including age, body mass index (BMI), neutrophil count, hemoglobin level, drainage volume on the third postoperative day, axillary lymph node metastasis (ALNM), surgical duration, intraoperative bleeding volume, and drainage duration. The area under the curve (AUC) of the Nomogram model was 0.898 in the training group and 0.886 in the validation group, indicating good discriminatory capacity. Calibration curves demonstrated good agreement between predicted values and actual values, with P-values for goodness-of-fit of 0.1761 (training) and 0.0648 (validation), respectively. Decision curve analysis revealed significant clinical benefits, with maximum benefit rates of 76.84% (training) and 80.40% (validation), respectively.

CONCLUSION

The Nomogram model developed in this study accurately predicts flap necrosis risk in BC patients post-MRM, offering significant clinical utility for risk management and improved patient outcomes.

摘要

背景

皮瓣坏死是乳腺癌改良根治术(MRM)后的一种严重并发症。它不仅会影响伤口愈合,还会延迟术后治疗,对患者生存率和整体生活质量产生不利影响。因此,开发一种准确的预测模型对于早期干预和改善患者预后至关重要。

目的

基于逻辑回归开发并验证一种列线图模型,以评估接受MRM的乳腺癌患者术后皮瓣坏死的风险。

方法

对605例行MRM的乳腺癌患者进行回顾性研究。这些患者按33:67的比例分为训练组(n = 406)和验证组(n = 199)。进行单因素和多因素逻辑回归分析以确定皮瓣坏死的危险因素,随后构建列线图预测模型。综合评估该模型的鉴别能力(通过受试者工作特征曲线[ROC]评估)、校准准确性(通过校准曲线评估)和临床益处(通过决策曲线分析)。此外,系统记录并分析了诸如敏感性、特异性和准确性等关键性能指标。

结果

确定了9个独立危险因素,包括年龄、体重指数(BMI)、中性粒细胞计数、血红蛋白水平、术后第3天引流量、腋窝淋巴结转移(ALNM)、手术时间、术中出血量和引流时间。列线图模型在训练组中的曲线下面积(AUC)为0.898,在验证组中为0.886,表明具有良好的鉴别能力。校准曲线显示预测值与实际值之间具有良好的一致性,拟合优度的P值分别为0.1761(训练组)和0.0648(验证组)。决策曲线分析显示出显著的临床益处,最大益处率分别为76.84%(训练组)和80.40%(验证组)。

结论

本研究开发的列线图模型准确预测了乳腺癌患者MRM术后皮瓣坏死风险,为风险管理和改善患者预后提供了显著的临床实用价值。

相似文献

2
4
Nomogram models for stratified prediction of axillary lymph node metastasis in breast cancer patients (cN0).
Front Endocrinol (Lausanne). 2022 Aug 30;13:967062. doi: 10.3389/fendo.2022.967062. eCollection 2022.
6
Prediction Model of Cervical Lymph Node Metastasis in Papillary Thyroid Carcinoma.
Cancer Control. 2024 Jan-Dec;31:10732748241295347. doi: 10.1177/10732748241295347.
10
Development and validation of a prognostic nomogram for colorectal cancer after surgery.
World J Clin Cases. 2021 Jul 26;9(21):5860-5872. doi: 10.12998/wjcc.v9.i21.5860.

引用本文的文献

本文引用的文献

1
Breast cancer statistics 2024.
CA Cancer J Clin. 2024 Nov-Dec;74(6):477-495. doi: 10.3322/caac.21863. Epub 2024 Oct 1.
3
Application of Chest CT Imaging Feature Model in Distinguishing Squamous Cell Carcinoma and Adenocarcinoma of the Lung.
Cancer Manag Res. 2024 Jun 4;16:547-557. doi: 10.2147/CMAR.S462951. eCollection 2024.
6
Prediction of vascular complications in free flap reconstruction with machine learning.
Am J Transl Res. 2024 Mar 15;16(3):817-828. doi: 10.62347/ZXJV8062. eCollection 2024.
7
New Old Age Meets the Same Old Ageism: Leveraging Technology to Promote Healthier Aging.
J Am Coll Radiol. 2024 Nov;21(11):1830-1831. doi: 10.1016/j.jacr.2024.03.013. Epub 2024 Mar 26.
8
Impact of mastectomy flap necrosis on prepectoral reconstructive outcomes.
J Plast Reconstr Aesthet Surg. 2024 Apr;91:128-134. doi: 10.1016/j.bjps.2024.01.054. Epub 2024 Feb 2.
9
Predicting reoperation and readmission for head and neck free flap patients using machine learning.
Head Neck. 2024 Aug;46(8):1999-2009. doi: 10.1002/hed.27690. Epub 2024 Feb 15.
10
Early breast cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up.
Ann Oncol. 2024 Feb;35(2):159-182. doi: 10.1016/j.annonc.2023.11.016. Epub 2023 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验