Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa, Israel.
Departamento de Estrés Abiótico, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Salamanca, Spain.
Methods Mol Biol. 2024;2798:27-43. doi: 10.1007/978-1-0716-3826-2_3.
Singlet oxygen is a reactive oxygen species that causes oxidative damage to plant cells, but intriguingly it can also act as a signalling molecule to reprogram gene expression required to induce plant physiological/cellular responses. Singlet oxygen photosensitization in plants mainly occurs in chloroplasts after the molecular collision of ground-state molecular oxygen with triplet-excited-state chlorophyll. Singlet oxygen direct detection through phosphorescence emission in chloroplasts is a herculean task due to its extremely low luminescence quantum yield. Because of this, indirect alternative methods have been developed for its detection in biological systems, for example, by measuring the changes in the EPR signal or fluorescence intensity of singlet oxygen reaction-based probes. The singlet oxygen chemiluminescence (SOCL) is a chemiluminescence probe with high sensitivity and selectivity towards singlet oxygen and promising use to detect it in living cells without the inconvenience of low stability of the EPR signal of spin probes in the presence of redox compounds, spurious light scattering coming from the light source required for the excitation of fluorescence probes or the light emission of endogenous fluorescent molecules like chlorophyll in chloroplasts. The protocol presented in this chapter describes the first steps to characterizing singlet oxygen production within the biological system under study; this is accomplished through monitoring molecular oxygen consumption by SOCL using a Clark-type oxygen electrode and measuring the chemiluminescence generated by SOCL 1,2-dioxetane using a spectrofluorometer. For singlet oxygen detection within living cells, a version of SOCL with increased membrane permeability (SOCL-CPP) is described.
单线态氧是一种活性氧物种,会对植物细胞造成氧化损伤,但有趣的是,它也可以作为一种信号分子,重新编程基因表达,从而诱导植物的生理/细胞反应。植物中的单线态氧敏化主要发生在叶绿体中,是基态分子氧与三重激发态叶绿素分子碰撞后的结果。由于单线态氧的磷光发射量子产率极低,因此直接在叶绿体中检测单线态氧是一项艰巨的任务。正因为如此,人们已经开发出一些间接替代方法来检测生物系统中的单线态氧,例如通过测量基于单线态氧反应的探针的 EPR 信号或荧光强度变化。单线态氧化学发光(SOCL)是一种对单线态氧具有高灵敏度和选择性的化学发光探针,有望在无需使用存在氧化还原化合物时自旋探针 EPR 信号不稳定、荧光探针激发所需光源的杂散光散射以及内源性荧光分子(如叶绿体中的叶绿素)的发光等不便的情况下,在活细胞中检测单线态氧。本章介绍的方案描述了在研究中的生物系统中表征单线态氧产生的最初步骤;这是通过使用 Clark 型氧电极监测 SOCL 对分子氧的消耗来完成的,并使用分光荧光计测量 SOCL-1,2-二氧杂环乙烷产生的化学发光来完成的。为了在活细胞内检测单线态氧,还描述了一种具有增强的膜通透性的 SOCL 版本(SOCL-CPP)。