Suppr超能文献

发光成像的最新进展与挑战:二氧杂环丁烷在水中化学发光的光明前景

Recent Advances and Challenges in Luminescent Imaging: Bright Outlook for Chemiluminescence of Dioxetanes in Water.

作者信息

Hananya Nir, Shabat Doron

机构信息

School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

出版信息

ACS Cent Sci. 2019 Jun 26;5(6):949-959. doi: 10.1021/acscentsci.9b00372. Epub 2019 May 29.

Abstract

Chemiluminescence is gradually being recognized as a powerful tool for sensing and imaging. Most known light-emitting compounds undergo chemiexcitation through spontaneous decomposition of cyclic peroxide moieties. A ground-breaking milestone in the chemistry of such compounds was achieved 30 years ago with the discovery of triggerable dioxetanes by Schaap's group. Our group has recently developed a distinct methodology to significantly improve the light emission efficiency of such phenoxy-dioxetane luminophores under physiological conditions. Introduction of an electron-withdrawing substituent at the ortho position of the phenoxy-dioxetane resulted in an approximately 3000-fold increase of the chemiluminescence quantum yield in aqueous media. Furthermore, we discovered that the emission wavelength and the kinetics of the chemiexcitation could be determined by the electronic nature of the substituent incorporated on the dioxetane luminophore. This recent development has provided scientists with new powerful chemiluminophores that can act as single-component probes for in vivo and in vitro detection and imaging of various analytes and enzymes. This outlook describes the recent progress toward applications of synthetic chemiluminescence luminophores suitable for sensing and imaging in aqueous environments.

摘要

化学发光正逐渐被公认为是一种用于传感和成像的强大工具。大多数已知的发光化合物通过环状过氧化物部分的自发分解进行化学激发。30年前,Schaap团队发现了可触发的二氧杂环丁烷,这是此类化合物化学领域的一个开创性里程碑。我们团队最近开发了一种独特的方法,可在生理条件下显著提高此类苯氧基二氧杂环丁烷发光体的发光效率。在苯氧基二氧杂环丁烷的邻位引入吸电子取代基,导致在水性介质中化学发光量子产率提高了约3000倍。此外,我们发现发射波长和化学激发动力学可以由二氧杂环丁烷发光体上引入的取代基的电子性质决定。这一最新进展为科学家们提供了新的强大化学发光体,可作为单组分探针用于体内和体外检测以及对各种分析物和酶进行成像。本展望描述了适用于水性环境传感和成像的合成化学发光发光体应用方面的最新进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/854d/6598152/b29ff2b65d7a/oc-2019-003728_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验