Suppr超能文献

甲烷菌素生物合成的初始步骤:混合价态二铁酶 MbnBC 对底物的结合。

Initial Steps in Methanobactin Biosynthesis: Substrate Binding by the Mixed-Valent Diiron Enzyme MbnBC.

出版信息

Biochemistry. 2024 May 7;63(9):1170-1177. doi: 10.1021/acs.biochem.4c00011. Epub 2024 Apr 8.

Abstract

The MbnBC enzyme complex converts cysteine residues in a peptide substrate, MbnA, to oxazolone/thioamide groups during the biosynthesis of copper chelator methanobactin (Mbn). MbnBC belongs to the mixed-valent diiron oxygenase (MVDO) family, of which members use an Fe(II)Fe(III) cofactor to react with dioxygen for substrate modification. Several crystal structures of the inactive Fe(III)Fe(III) form of MbnBC alone and in complex with MbnA have been reported, but a mechanistic understanding requires determination of the oxidation states of the crystallographically observed Fe ions in the catalytically active Fe(II)Fe(III) state, along with the site of MbnA binding. Here, we have used electron nuclear double resonance (ENDOR) spectroscopy to determine such structural and electronic properties of the active site, in particular, the mode of substrate binding to the MV state, information not accessible by X-ray crystallography alone. The oxidation states of the two Fe ions were determined by N ENDOR analysis. The presence and locations of both bridging and terminal exogenous solvent ligands were determined using H and H ENDOR. In addition, H ENDOR using an isotopically labeled MbnA substrate indicates that MbnA binds to the Fe(III) ion of the cluster via the sulfur atom of its -terminal modifiable cysteine residue, with displacement of a coordinated solvent ligand as shown by complementary H ENDOR. These results, which underscore the utility of ENDOR in studying MVDOs, provide a molecular picture of the initial steps in Mbn biosynthesis.

摘要

MbnBC 酶复合物在铜螯合剂甲烷菌素 (Mbn) 的生物合成过程中,将肽底物 MbnA 中的半胱氨酸残基转化为恶唑酮/硫酰胺基团。MbnBC 属于混合价态二铁氧酶 (MVDO) 家族,其成员使用 Fe(II)Fe(III) 辅因子与氧气反应进行底物修饰。已经报道了单独的和与 MbnA 复合物形式的非活性 Fe(III)Fe(III)形式的 MbnBC 的几个晶体结构,但需要确定在催化活性的 Fe(II)Fe(III)状态下晶体学观察到的 Fe 离子的氧化态,以及 MbnA 结合的部位,才能实现对其机制的理解。在这里,我们使用电子-核双共振 (ENDOR) 光谱学来确定活性位点的这种结构和电子特性,特别是 MV 状态下底物结合的模式,这些信息是单独的 X 射线晶体学无法获得的。通过 N ENDOR 分析确定了两个 Fe 离子的氧化态。使用 H 和 H ENDOR 确定了桥连和末端外源溶剂配体的存在和位置。此外,使用同位素标记的 MbnA 底物的 H ENDOR 表明,MbnA 通过其 -末端可修饰半胱氨酸残基的硫原子结合到簇的 Fe(III) 离子上,同时通过互补的 H ENDOR 显示出配位溶剂配体的置换。这些结果强调了 ENDOR 在研究 MVDO 中的应用,为 Mbn 生物合成的初始步骤提供了分子图像。

相似文献

1
Initial Steps in Methanobactin Biosynthesis: Substrate Binding by the Mixed-Valent Diiron Enzyme MbnBC.
Biochemistry. 2024 May 7;63(9):1170-1177. doi: 10.1021/acs.biochem.4c00011. Epub 2024 Apr 8.
2
A mixed-valent Fe(II)Fe(III) species converts cysteine to an oxazolone/thioamide pair in methanobactin biosynthesis.
Proc Natl Acad Sci U S A. 2022 Mar 29;119(13):e2123566119. doi: 10.1073/pnas.2123566119. Epub 2022 Mar 23.
3
Crystal structure and catalytic mechanism of the MbnBC holoenzyme required for methanobactin biosynthesis.
Cell Res. 2022 Mar;32(3):302-314. doi: 10.1038/s41422-022-00620-2. Epub 2022 Feb 2.
4
Purification and biochemical characterization of methanobactin biosynthetic enzymes.
Methods Enzymol. 2024;702:171-187. doi: 10.1016/bs.mie.2024.06.011. Epub 2024 Jul 14.
6
The enzymology of oxazolone and thioamide synthesis in methanobactin.
Methods Enzymol. 2021;656:341-373. doi: 10.1016/bs.mie.2021.04.008. Epub 2021 May 7.

引用本文的文献

1
Copper-chelating natural products.
J Biol Inorg Chem. 2025 Mar;30(2):111-124. doi: 10.1007/s00775-025-02099-9. Epub 2025 Feb 17.
2
O Activation and Enzymatic C-H Bond Activation Mediated by a Dimanganese Cofactor.
J Am Chem Soc. 2025 Jan 15;147(2):2148-2157. doi: 10.1021/jacs.4c16271. Epub 2025 Jan 1.
3
Purification and biochemical characterization of methanobactin biosynthetic enzymes.
Methods Enzymol. 2024;702:171-187. doi: 10.1016/bs.mie.2024.06.011. Epub 2024 Jul 14.
4
A multi-iron enzyme installs copper-binding oxazolone/thioamide pairs on a nontypeable virulence factor.
Proc Natl Acad Sci U S A. 2024 Jul 9;121(28):e2408092121. doi: 10.1073/pnas.2408092121. Epub 2024 Jul 5.
5
Multinuclear non-heme iron dependent oxidative enzymes (MNIOs) involved in unusual peptide modifications.
Curr Opin Chem Biol. 2024 Jun;80:102467. doi: 10.1016/j.cbpa.2024.102467. Epub 2024 May 20.

本文引用的文献

1
Structures of the holoenzyme TglHI required for 3-thiaglutamate biosynthesis.
Structure. 2023 Oct 5;31(10):1220-1232.e5. doi: 10.1016/j.str.2023.08.004. Epub 2023 Aug 30.
2
Macrocyclization and Backbone Rearrangement During RiPP Biosynthesis by a SAM-Dependent Domain-of-Unknown-Function 692.
ACS Cent Sci. 2023 Apr 24;9(5):1008-1018. doi: 10.1021/acscentsci.3c00160. eCollection 2023 May 24.
3
ARBM101 (Methanobactin SB2) Drains Excess Liver Copper via Biliary Excretion in Wilson's Disease Rats.
Gastroenterology. 2023 Jul;165(1):187-200.e7. doi: 10.1053/j.gastro.2023.03.216. Epub 2023 Mar 24.
4
Substrate Recognition by the Peptidyl-()-2-mercaptoglycine Synthase TglHI during 3-Thiaglutamate Biosynthesis.
ACS Chem Biol. 2022 Apr 15;17(4):930-940. doi: 10.1021/acschembio.2c00087. Epub 2022 Apr 1.
5
A mixed-valent Fe(II)Fe(III) species converts cysteine to an oxazolone/thioamide pair in methanobactin biosynthesis.
Proc Natl Acad Sci U S A. 2022 Mar 29;119(13):e2123566119. doi: 10.1073/pnas.2123566119. Epub 2022 Mar 23.
6
Crystal structure and catalytic mechanism of the MbnBC holoenzyme required for methanobactin biosynthesis.
Cell Res. 2022 Mar;32(3):302-314. doi: 10.1038/s41422-022-00620-2. Epub 2022 Feb 2.
7
BesC Initiates C-C Cleavage through a Substrate-Triggered and Reactive Diferric-Peroxo Intermediate.
J Am Chem Soc. 2021 Dec 22;143(50):21416-21424. doi: 10.1021/jacs.1c11109. Epub 2021 Dec 13.
8
Use of a scaffold peptide in the biosynthesis of amino acid-derived natural products.
Science. 2019 Jul 19;365(6450):280-284. doi: 10.1126/science.aau6232.
9
Oxidative Decarboxylase UndA Utilizes a Dinuclear Iron Cofactor.
J Am Chem Soc. 2019 Jun 5;141(22):8684-8688. doi: 10.1021/jacs.9b02545. Epub 2019 May 22.
10
A New Microbial Pathway for Organophosphonate Degradation Catalyzed by Two Previously Misannotated Non-Heme-Iron Oxygenases.
Biochemistry. 2019 Mar 26;58(12):1627-1647. doi: 10.1021/acs.biochem.9b00044. Epub 2019 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验