MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
J Chem Inf Model. 2024 Apr 22;64(8):3149-3160. doi: 10.1021/acs.jcim.4c00115. Epub 2024 Apr 8.
Cytochrome P450 enzymes (CYPs) play a crucial role in Phase I drug metabolism in the human body, and CYP activity toward compounds can significantly affect druggability, making early prediction of CYP activity and substrate identification essential for therapeutic development. Here, we established a deep learning model for assessing potential CYP substrates, DeepP450, by fine-tuning protein and molecule pretrained models through feature integration with cross-attention and self-attention layers. This model exhibited high prediction accuracy (0.92) on the test set, with area under the receiver operating characteristic curve (AUROC) values ranging from 0.89 to 0.98 in substrate/nonsubstrate predictions across the nine major human CYPs, surpassing current benchmarks for CYP activity prediction. Notably, DeepP450 uses only one model to predict substrates/nonsubstrates for any of the nine CYPs and exhibits certain generalizability on novel compounds and different categories of human CYPs, which could greatly facilitate early stage drug design by avoiding CYP-reactive compounds.
细胞色素 P450 酶(CYPs)在人体内的 I 相药物代谢中起着至关重要的作用,化合物对 CYP 的活性影响很大,因此对 CYP 活性的早期预测和底物鉴定对于治疗性药物的开发至关重要。在这里,我们通过特征整合交叉注意和自注意层,微调了蛋白质和分子的预训练模型,建立了一个用于评估潜在 CYP 底物的深度学习模型 DeepP450。该模型在测试集上表现出了很高的预测准确性(0.92),在对 9 种主要人类 CYP 的底物/非底物预测中,受体操作特征曲线(AUROC)值范围为 0.89 至 0.98,超过了目前 CYP 活性预测的基准。值得注意的是,DeepP450 仅使用一个模型即可预测任何 9 种 CYP 中的底物/非底物,并且对新化合物和不同类别的人类 CYP 具有一定的通用性,这可以极大地促进早期药物设计,避免使用 CYP 反应性化合物。