Atwereboannah Abena Achiaa, Wu Wei-Ping, Al-Antari Mugahed A, Yussif Sophyani B, Ejiyi Chukwuebuka J, Tenagyei Edwin K, Kissanga Grace-Mercure B, Emmanuel Gyarteng S A, Gu Yeong Hyeon, Ahene Emmanuel
School of Computer Science and Engineering, University of Electronic Science and Technology, Chengdu, People's Republic of China.
SipingSoft Co. Ltd., Tianfu Software Park, Chengdu, People's Republic of China.
Sci Rep. 2025 Jul 1;15(1):21820. doi: 10.1038/s41598-025-04982-6.
Drug-drug interactions (DDIs) present serious risks in clinical settings, especially for patients who are prescribed multiple medications. A major factor contributing to these interactions is the inhibition of cytochrome P450 (CYP450) enzymes, which are vital for drug metabolism. As a result, reliably identifying compounds that may inhibit CYP450 enzymes is a key step in drug development. However, existing machine learning (ML) methods often fall short in terms of prediction accuracy and biological interpretability. To address this challenge, we introduce a Multimodal Encoder Network (MEN) aimed at improving the prediction of CYP450 inhibitors. This model combines three types of molecular data (chemical fingerprints, molecular graphs, and protein sequences) by applying specialized encoders tailored to each format. Specifically, the Fingerprint Encoder Network (FEN) processes molecular fingerprints, the Graph Encoder Network (GEN) extracts structural features from graph-based representations, and the Protein Encoder Network (PEN) captures sequential patterns from protein sequences. By integrating these diverse data types, MEN can extract complementary information that enhances predictive performance. The encoded outputs from FEN, GEN, and PEN are fused to build a comprehensive feature representation. An explainable AI (XAI) module is incorporated into the model to support biological interpretation, using visualization techniques such as heatmaps. The model was trained and validated using two datasets: chemical structures in SMILES format from PubChem and protein sequences of five CYP450 isoforms (1A2, 2C9, 2C19, 2D6, and 3A4) obtained from the Protein Data Bank (PDB). MEN achieved an average accuracy of 93.7% across all isoforms. The individual encoders performed with accuracies of 80.8% (FEN), 82.3% (GEN), and 81.5% (PEN). Additional performance results include an AUC of 98.5%, sensitivity of 95.9%, specificity of 97.2%, precision of 80.6%, F1-score of 83.4%, and a Matthews correlation coefficient (MCC) of 88.2%. All data and code are available at https://github.com/GracedAbena/MEN-Leveraging-Explainable-Multimodal-Encoding-Network .
药物相互作用(DDIs)在临床环境中存在严重风险,尤其是对于那些被开具多种药物的患者。导致这些相互作用的一个主要因素是细胞色素P450(CYP450)酶的抑制,而这些酶对于药物代谢至关重要。因此,可靠地识别可能抑制CYP450酶的化合物是药物开发中的关键一步。然而,现有的机器学习(ML)方法在预测准确性和生物学可解释性方面往往存在不足。为应对这一挑战,我们引入了一种多模态编码器网络(MEN),旨在改进对CYP450抑制剂的预测。该模型通过应用针对每种格式量身定制的专门编码器,结合了三种类型的分子数据(化学指纹、分子图和蛋白质序列)。具体而言,指纹编码器网络(FEN)处理分子指纹,图编码器网络(GEN)从基于图的表示中提取结构特征,蛋白质编码器网络(PEN)从蛋白质序列中捕获序列模式。通过整合这些不同的数据类型,MEN可以提取增强预测性能的互补信息。FEN、GEN和PEN的编码输出被融合以构建全面的特征表示。一个可解释人工智能(XAI)模块被纳入模型以支持生物学解释,使用诸如热图等可视化技术。该模型使用两个数据集进行训练和验证:来自PubChem的SMILES格式化学结构以及从蛋白质数据库(PDB)获得的五种CYP450同工型(1A2、2C9、2C19、2D6和3A4)的蛋白质序列。MEN在所有同工型上实现了93.7%的平均准确率。各个编码器的准确率分别为80.8%(FEN)、82.3%(GEN)和81.5%(PEN)。其他性能结果包括曲线下面积(AUC)为98.5%、灵敏度为95.9%、特异性为97.2%、精确率为80.6%、F1分数为83.4%以及马修斯相关系数(MCC)为88.2%。所有数据和代码可在https://github.com/GracedAbena/MEN-Leveraging-Explainable-Multimodal-Encoding-Network获取。