Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
Department of Endocrinology and Metabolism, Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
Proc Natl Acad Sci U S A. 2024 Apr 16;121(16):e2318935121. doi: 10.1073/pnas.2318935121. Epub 2024 Apr 8.
Glucose is required for generating heat during cold-induced nonshivering thermogenesis in adipose tissue, but the regulatory mechanism is largely unknown. CREBZF has emerged as a critical mechanism for metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD). We investigated the roles of CREBZF in the control of thermogenesis and energy metabolism. Glucose induces CREBZF in human white adipose tissue (WAT) and inguinal WAT (iWAT) in mice. Lys208 acetylation modulated by transacetylase CREB-binding protein/p300 and deacetylase HDAC3 is required for glucose-induced reduction of proteasomal degradation and augmentation of protein stability of CREBZF. Glucose induces rectal temperature and thermogenesis in white adipose of control mice, which is further potentiated in adipose-specific CREBZF knockout (CREBZF FKO) mice. During cold exposure, CREBZF FKO mice display enhanced thermogenic gene expression, browning of iWAT, and adaptive thermogenesis. CREBZF associates with PGC-1α to repress thermogenic gene expression. Expression levels of CREBZF are negatively correlated with UCP1 in human adipose tissues and increased in WAT of obese ob/ob mice, which may underscore the potential role of CREBZF in the development of compromised thermogenic capability under hyperglycemic conditions. Our results reveal an important mechanism of glucose sensing and thermogenic inactivation through reversible acetylation.
葡萄糖是在寒冷诱导的脂肪组织非颤抖产热过程中产生热量所必需的,但调节机制在很大程度上尚不清楚。CREBZF 已成为代谢功能障碍相关脂肪性肝病(MASLD)的关键机制,以前称为非酒精性脂肪性肝病(NAFLD)。我们研究了 CREBZF 在产热和能量代谢控制中的作用。葡萄糖可诱导人白色脂肪组织(WAT)和小鼠腹股沟 WAT(iWAT)中的 CREBZF。赖氨酸 208 乙酰化由转乙酰酶 CREB 结合蛋白/p300 和去乙酰化酶 HDAC3 调节,对于葡萄糖诱导的降低蛋白酶体降解和增加 CREBZF 蛋白稳定性是必需的。葡萄糖可诱导对照小鼠白色脂肪的直肠温度和产热,在脂肪特异性 CREBZF 敲除(CREBZF FKO)小鼠中进一步增强。在寒冷暴露期间,CREBZF FKO 小鼠显示出增强的产热基因表达、iWAT 的褐色化和适应性产热。CREBZF 与 PGC-1α 结合以抑制产热基因表达。CREBZF 的表达水平与人脂肪组织中的 UCP1 呈负相关,并在肥胖 ob/ob 小鼠的 WAT 中增加,这可能强调了 CREBZF 在高血糖条件下产热能力受损发展中的潜在作用。我们的研究结果揭示了葡萄糖感应和产热失活的重要机制,即通过可逆乙酰化。