Suppr超能文献

AAPM WGPE 报告 394:物理计划和图表审查的模拟误差培训。

AAPM WGPE report 394: Simulated error training for the physics plan and chart review.

机构信息

Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida, USA.

University of Florida Health Proton Therapy Institute, Jacksonville, Florida, USA.

出版信息

Med Phys. 2024 May;51(5):3165-3172. doi: 10.1002/mp.17051. Epub 2024 Apr 8.

Abstract

BACKGROUND

Simulated error training is a method to practice error detection in situations where the occurrence of error is low. Such is the case for the physics plan and chart review where a physicist may check several plans before encountering a significant problem. By simulating potentially hazardous errors, physicists can become familiar with how they manifest and learn from mistakes made during a simulated plan review.

PURPOSE

The purpose of this project was to develop a series of training datasets that allows medical physicists and trainees to practice plan and chart reviews in a way that is familiar and accessible, and to provide exposure to the various failure modes (FMs) encountered in clinical scenarios.

METHODS

A series of training datasets have been developed that include a variety of embedded errors based on the risk-assessment performed by American Association of Physicists in Medicine (AAPM) Task Group 275 for the physics plan and chart review. The training datasets comprise documentation, screen shots, and digital content derived from common treatment planning and radiation oncology information systems and are available via the Cloud-based platform ProKnow.

RESULTS

Overall, 20 datasets have been created incorporating various software systems (Mosaiq, ARIA, Eclipse, RayStation, Pinnacle) and delivery techniques. A total of 110 errors representing 50 different FMs were embedded with the 20 datasets. The project was piloted at the 2021 AAPM Annual Meeting in a workshop where participants had the opportunity to review cases and answer survey questions related to errors they detected and their perception of the project's efficacy. In general, attendees detected higher-priority FMs at a higher rate, though no correlation was found between detection rate and the detectability of the FMs. Familiarity with a given system appeared to play a role in detecting errors, specifically when related to missing information at different locations within a given software system. Overall, 96% of respondents either agreed or strongly agreed that the ProKnow portal and training datasets were effective as a training tool, and 75% of respondents agreed or strongly agreed that they planned to use the tool at their local institution.

CONCLUSIONS

The datasets and digital platform provide a standardized and accessible tool for training, performance assessment, and continuing education regarding the physics plan and chart review. Work is ongoing to expand the project to include more modalities, radiation oncology treatment planning and information systems, and FMs based on emerging techniques such as auto-contouring and auto-planning.

摘要

背景

模拟错误训练是一种在错误发生频率较低的情况下练习错误检测的方法。这种情况适用于物理计划和图表审查,物理学家在遇到重大问题之前可能会检查几个计划。通过模拟潜在的危险错误,物理学家可以熟悉它们的表现,并从模拟计划审查中犯的错误中吸取教训。

目的

本项目的目的是开发一系列培训数据集,使医学物理学家和学员能够以熟悉和易于访问的方式进行计划和图表审查,并接触到临床场景中遇到的各种故障模式 (FM)。

方法

已经开发了一系列培训数据集,这些数据集基于美国医学物理学家协会 (AAPM) 工作组 275 对物理计划和图表审查进行的风险评估,其中包括各种嵌入式错误。培训数据集包括来自常见治疗计划和放射肿瘤信息系统的文档、屏幕截图和数字内容,并可通过基于云的 ProKnow 平台获得。

结果

总体而言,已经创建了 20 个数据集,其中包括各种软件系统(Mosaiq、ARIA、Eclipse、RayStation、Pinnacle)和交付技术。总共嵌入了 20 个数据集的 110 个代表 50 个不同 FM 的错误。该项目在 2021 年 AAPM 年会上的一个研讨会上进行了试点,参与者有机会审查案例并回答与他们检测到的错误及其对项目效果的看法相关的调查问题。一般来说,与会者以更高的速度检测到更高优先级的 FM,尽管检测率与 FM 的可检测性之间没有相关性。对给定系统的熟悉程度似乎在检测错误方面发挥了作用,特别是在与给定软件系统中不同位置的缺失信息相关时。总体而言,96%的受访者表示同意或强烈同意 ProKnow 门户和培训数据集是有效的培训工具,75%的受访者表示同意或强烈同意他们计划在当地机构使用该工具。

结论

这些数据集和数字平台为物理计划和图表审查的培训、绩效评估和继续教育提供了标准化和易于访问的工具。正在努力扩大该项目,以包括更多模式、放射肿瘤治疗计划和信息系统,以及基于自动轮廓和自动计划等新兴技术的 FM。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验