Zhao Weixin, Chen Xinwei, Ma Hao, Li Dan, Yang Haizhou, Hu Tianyi, Zhao Qingliang, Jiang Junqiu, Wei Liangliang
State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
Bioresour Technol. 2024 May;400:130678. doi: 10.1016/j.biortech.2024.130678. Epub 2024 Apr 7.
Proteins and carbohydrates are important organics in waste activated sludge, and greatly affect methane production and microbial community composition in anaerobic digestion systems. Here, a series of co-substrates with different molecular weight were applied to investigate the interactions between microbial dynamics and the molecular weight of co-substrates. Biochemical methane production assays conducted in batch co-digesters showed that feeding high molecular weight protein and carbohydrate substrates resulted in higher methane yield and production rates. Moreover, high-molecular weight co-substrates increased the microbial diversity, enriched specific microbes including Longilinea, Anaerolineaceae, Syner-01, Methanothrix, promoted acidogenic and acetoclastic methanogenic pathways. Low-molecular weight co-substrates favored the growth of JGI-0000079-D21, Armatimonadota, Methanosarcina, Methanolinea, and improved hydrogenotrophic methanogenic pathway. Besides, Methanoregulaceae and Methanolinea were indicators of methane yield. This study firstly revealed the complex interactions between co-substrate molecular weight and microbial communities, and demonstrated the feasibility of adjusting co-substrate molecular weight to improve methane production process.
蛋白质和碳水化合物是剩余活性污泥中的重要有机物,对厌氧消化系统中的甲烷产生和微生物群落组成有很大影响。在此,应用了一系列不同分子量的共底物来研究微生物动态与共底物分子量之间的相互作用。在间歇式共消化器中进行的生化甲烷产量测定表明,投喂高分子量蛋白质和碳水化合物底物可产生更高的甲烷产量和产率。此外,高分子量共底物增加了微生物多样性,富集了包括长绳菌属、厌氧绳菌科、Syner - 01、甲烷丝状菌属在内的特定微生物,促进了产酸和乙酸裂解产甲烷途径。低分子量共底物有利于JGI - 0000079 - D21、装甲菌门、甲烷八叠球菌属、甲烷线菌属的生长,并改善了氢营养型产甲烷途径。此外,甲烷调节菌科和甲烷线菌属是甲烷产量的指标。本研究首次揭示了共底物分子量与微生物群落之间的复杂相互作用,并证明了通过调节共底物分子量来改善甲烷生产过程的可行性。