Suppr超能文献

一种用于揭开厌氧消化黑箱之谜并实现更高沼气产量的宏基因组学方法:综述

A metagenomic approach to demystify the anaerobic digestion black box and achieve higher biogas yield: a review.

作者信息

Ostos Iván, Flórez-Pardo Luz Marina, Camargo Carolina

机构信息

Grupo de Investigación en Ingeniería Electrónica, Industrial, Ambiental, Metrología GIEIAM, Universidad Santiago de Cali, Cali, Colombia.

Grupo de Investigación en Modelado, Análisis y Simulación de Procesos Ambientales e Industriales PAI+, Universidad Autónoma de Occidente, Cali, Colombia.

出版信息

Front Microbiol. 2024 Oct 11;15:1437098. doi: 10.3389/fmicb.2024.1437098. eCollection 2024.

Abstract

The increasing reliance on fossil fuels and the growing accumulation of organic waste necessitates the exploration of sustainable energy alternatives. Anaerobic digestion (AD) presents one such solution by utilizing secondary biomass to produce biogas while reducing greenhouse gas emissions. Given the crucial role of microbial activity in anaerobic digestion, a deeper understanding of the microbial community is essential for optimizing biogas production. While metagenomics has emerged as a valuable tool for unravelling microbial composition and providing insights into the functional potential in biodigestion, it falls short of interpreting the functional and metabolic interactions, limiting a comprehensive understanding of individual roles in the community. This emphasizes the significance of expanding the scope of metagenomics through innovative tools that highlight the often-overlooked, yet crucial, role of microbiota in biomass digestion. These tools can more accurately elucidate microbial ecological fitness, shared metabolic pathways, and interspecies interactions. By addressing current limitations and integrating metagenomics with other omics approaches, more accurate predictive techniques can be developed, facilitating informed decision-making to optimize AD processes and enhance biogas yields, thereby contributing to a more sustainable future.

摘要

对化石燃料的日益依赖以及有机废物的不断积累,使得探索可持续能源替代方案成为必要。厌氧消化(AD)通过利用二次生物质来生产沼气,同时减少温室气体排放,提供了一种这样的解决方案。鉴于微生物活性在厌氧消化中的关键作用,深入了解微生物群落对于优化沼气生产至关重要。虽然宏基因组学已成为揭示微生物组成并深入了解生物消化中功能潜力的宝贵工具,但它在解释功能和代谢相互作用方面存在不足,限制了对群落中个体作用的全面理解。这凸显了通过创新工具扩大宏基因组学范围的重要性,这些工具突出了微生物群落在生物质消化中经常被忽视但至关重要的作用。这些工具可以更准确地阐明微生物生态适应性、共享代谢途径和种间相互作用。通过解决当前的局限性并将宏基因组学与其他组学方法相结合,可以开发出更准确的预测技术,促进明智的决策,以优化厌氧消化过程并提高沼气产量,从而为更可持续的未来做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b6a/11502389/710fbbf409f3/fmicb-15-1437098-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验