Ostos Iván, Flórez-Pardo Luz Marina, Camargo Carolina
Grupo de Investigación en Ingeniería Electrónica, Industrial, Ambiental, Metrología GIEIAM, Universidad Santiago de Cali, Cali, Colombia.
Grupo de Investigación en Modelado, Análisis y Simulación de Procesos Ambientales e Industriales PAI+, Universidad Autónoma de Occidente, Cali, Colombia.
Front Microbiol. 2024 Oct 11;15:1437098. doi: 10.3389/fmicb.2024.1437098. eCollection 2024.
The increasing reliance on fossil fuels and the growing accumulation of organic waste necessitates the exploration of sustainable energy alternatives. Anaerobic digestion (AD) presents one such solution by utilizing secondary biomass to produce biogas while reducing greenhouse gas emissions. Given the crucial role of microbial activity in anaerobic digestion, a deeper understanding of the microbial community is essential for optimizing biogas production. While metagenomics has emerged as a valuable tool for unravelling microbial composition and providing insights into the functional potential in biodigestion, it falls short of interpreting the functional and metabolic interactions, limiting a comprehensive understanding of individual roles in the community. This emphasizes the significance of expanding the scope of metagenomics through innovative tools that highlight the often-overlooked, yet crucial, role of microbiota in biomass digestion. These tools can more accurately elucidate microbial ecological fitness, shared metabolic pathways, and interspecies interactions. By addressing current limitations and integrating metagenomics with other omics approaches, more accurate predictive techniques can be developed, facilitating informed decision-making to optimize AD processes and enhance biogas yields, thereby contributing to a more sustainable future.
对化石燃料的日益依赖以及有机废物的不断积累,使得探索可持续能源替代方案成为必要。厌氧消化(AD)通过利用二次生物质来生产沼气,同时减少温室气体排放,提供了一种这样的解决方案。鉴于微生物活性在厌氧消化中的关键作用,深入了解微生物群落对于优化沼气生产至关重要。虽然宏基因组学已成为揭示微生物组成并深入了解生物消化中功能潜力的宝贵工具,但它在解释功能和代谢相互作用方面存在不足,限制了对群落中个体作用的全面理解。这凸显了通过创新工具扩大宏基因组学范围的重要性,这些工具突出了微生物群落在生物质消化中经常被忽视但至关重要的作用。这些工具可以更准确地阐明微生物生态适应性、共享代谢途径和种间相互作用。通过解决当前的局限性并将宏基因组学与其他组学方法相结合,可以开发出更准确的预测技术,促进明智的决策,以优化厌氧消化过程并提高沼气产量,从而为更可持续的未来做出贡献。