Huang Haowu, Li Wenqiu, Zhao Yiwang, Yao Shunyu, Liu Xiaoqing, Liu Mingxing, Guo Huiling
Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China.
Center for Materials Research and Analysis, Wuhan University of Technology, Wuhan 430070, PR China.
ACS Appl Mater Interfaces. 2024 Apr 9. doi: 10.1021/acsami.3c17157.
Thermodynamic therapy (TDT) based on oxygen-independent free radicals exhibits promising potential for the treatment of hypoxic tumors. However, its therapeutic efficacy is seriously limited by the premature release of the drug and the free radical scavenging effect of glutathione (GSH) in tumors. Herein, we report a GSH depletion and biosynthesis inhibition strategy using EGCG/Fe-camouflaged gold nanorod core/ZIF-8 shell nanoparticles embedded with azo initiator 2,2'-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIPH) and L-buthionine-sulfoximine (BSO) for tumor-targeting photothermal (PTT) and thermodynamic therapy (TDT). This nanoplatform (GNR@ZIF-8-AIPH/BSO@EGCG/Fe, GZABEF) endows a pH-responsive release performance. With the 67 kDa lamin receptor (67LR)-targeting ability of EGCG, GZABEF could selectively release oxygen-independent free radicals in tumor cells under 1064 nm laser irradiation. More importantly, Fe-mediated GSH depletion and BSO-mediated GSH biosynthesis inhibition significantly boosted the accumulation of alkyl radicals. In 4T1 cells, GZABEF induced cancer cell death via intracellular GSH depletion and GSH peroxidase 4 (GPX4) inactivation. In a subcutaneous xenograft model of 4T1, GZABEF demonstrated remarkable tumor growth inhibition (78.2%). In addition, excellent biosafety and biocompatibility of GZABEF were observed both in vitro and in vivo. This study provides inspiration for amplified TDT/PTT-mediated antitumor efficacy.
基于非氧自由基的热力学疗法(TDT)在治疗缺氧肿瘤方面展现出了广阔的潜力。然而,其治疗效果受到药物过早释放以及肿瘤中谷胱甘肽(GSH)的自由基清除作用的严重限制。在此,我们报道了一种GSH消耗和生物合成抑制策略,该策略使用包埋有偶氮引发剂2,2'-偶氮二[2-(2-咪唑啉-2-基)丙烷]二盐酸盐(AIPH)和L-丁硫氨酸亚砜胺(BSO)的表没食子儿茶素没食子酸酯(EGCG)/铁伪装的金纳米棒核/ZIF-8壳纳米颗粒进行肿瘤靶向光热疗法(PTT)和热力学疗法(TDT)。这种纳米平台(GNR@ZIF-8-AIPH/BSO@EGCG/Fe,GZABEF)具有pH响应释放性能。凭借EGCG对67 kDa层粘连蛋白受体(67LR)的靶向能力,GZABEF能够在1064 nm激光照射下在肿瘤细胞中选择性释放非氧自由基。更重要的是,铁介导的GSH消耗和BSO介导的GSH生物合成抑制显著增强了烷基自由基的积累。在4T1细胞中,GZABEF通过细胞内GSH消耗和谷胱甘肽过氧化物酶4(GPX4)失活诱导癌细胞死亡。在4T1皮下异种移植模型中,GZABEF表现出显著的肿瘤生长抑制作用(78.2%)。此外,在体外和体内均观察到GZABEF具有出色的生物安全性和生物相容性。本研究为增强TDT/PTT介导的抗肿瘤疗效提供了思路。