Eladarousy Omar, Zibara Zahraa, Hussari Khaled, Al Helou Nissrine, Nicolas Rana
Department of Physical Sciences, Lebanese American University, Beirut, Lebanon.
Department of Biological Sciences, Lebanese American University, Beirut, Lebanon.
Sci Rep. 2025 May 23;15(1):17897. doi: 10.1038/s41598-025-95798-x.
Effective cancer treatment demands precision to target malignant tissues while sparing healthy ones. This study investigates numerically the role of plasmonic photothermal therapy (PPTT) as a minimally invasive approach to achieve this goal, focusing on the interplay between nanoparticle (NP) size, resonance wavelength, and the thermal properties of biological tissues. Tailoring NP characteristics to align with tissue-specific optical and thermal properties enables precise thermal delivery, enhancing therapeutic efficacy while minimizing collateral damage. Resonance wavelength shifts with NP size, while tissue parameters like thermal conductivity and refractive index further influence temperature profiles. These findings highlight the importance of optimizing PPTT protocols through computational modeling and experimental validation. This approach advances personalized cancer therapies, offering safer and more effective treatment outcomes.
有效的癌症治疗需要精准地靶向恶性组织,同时避免损伤健康组织。本研究通过数值模拟研究了等离子体光热疗法(PPTT)作为一种微创方法实现这一目标的作用,并重点关注纳米颗粒(NP)尺寸、共振波长与生物组织热特性之间的相互作用。根据组织特定的光学和热特性调整NP特性,能够实现精确的热传递,可以提高治疗效果,同时将附带损伤降至最低。共振波长会随着NP尺寸而发生偏移,而诸如热导率和折射率等组织参数会进一步影响温度分布。这些发现凸显了通过计算建模和实验验证来优化PPTT方案的重要性。这种方法推动了个性化癌症治疗领域向前发展,并带来更安全、更有效的治疗效果