Quan Qiuyan, Zhao Tianyu, Luo Zhuo, Li Bai-Xue, Sun Hao, Zhao Hao-Yu, Yu Zhong-Zhen, Yang Dongzhi
Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
ACS Appl Mater Interfaces. 2024 Apr 24;16(16):21133-21145. doi: 10.1021/acsami.4c02182. Epub 2024 Apr 9.
Although conductive hydrogel-based flexible electronic devices have superb flexibility and high conductivities, they tend to malfunction in dry or frigid areas. Herein, an ultralow-temperature tolerant, antidrying, and conductive composite hydrogel is designed for electronic skin applications on the basis of the synergy of double-cross-linked polymer networks, Hofmeister effect, and electrostatic interaction and fabricated by in situ free radical polymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid and acrylic acid in the presence of poly(vinyl alcohol) and conductive MXene sheets, followed by impregnation with LiCl. Thanks to the synergy of LiCl and the charged polar terminal groups of the synthesized polymers, the composite hydrogel can not only bear an ultralow temperature of -80 °C without freezing but also maintain its original mass. Meanwhile, the resultant hydrogel possesses satisfactory self-regeneration ability benefiting from the moisturizing effect of LiCl. The conductive network of MXene sheets greatly improves the ionic conductivity of the hydrogel at low temperatures, exhibiting an ionic conductivity of 1.4 S m at -80 °C. Furthermore, the electronic skin assembled by the multifunctional hydrogel is efficient in monitoring human motions at -80 °C. The antifreezing and antidrying features along with favorable ionic conductivity, high tensile strength, and outstanding flexibility make the composite hydrogel promising for applications in frigid and dry regions.
尽管基于导电水凝胶的柔性电子器件具有出色的柔韧性和高导电性,但它们在干燥或寒冷地区往往会出现故障。在此,基于双交联聚合物网络、霍夫迈斯特效应和静电相互作用的协同作用,设计了一种耐超低温、抗干燥且导电的复合水凝胶,用于电子皮肤应用,并通过在聚乙烯醇和导电MXene片存在下,使2-丙烯酰胺基-2-甲基丙烷磺酸和丙烯酸进行原位自由基聚合,随后用LiCl浸渍来制备。由于LiCl与合成聚合物的带电极性端基的协同作用,复合水凝胶不仅能够承受-80°C的超低温而不冻结,还能保持其原始质量。同时,得益于LiCl的保湿作用,所得水凝胶具有令人满意的自再生能力。MXene片的导电网络极大地提高了水凝胶在低温下的离子电导率,在-80°C时表现出1.4 S/m的离子电导率。此外,由多功能水凝胶组装而成的电子皮肤在-80°C下能够高效监测人体运动。其抗冻和抗干燥特性以及良好的离子电导率、高拉伸强度和出色的柔韧性,使得复合水凝胶在寒冷和干燥地区的应用前景广阔。