Suppr超能文献

霍夫迈斯特效应介导的强力聚(2-羟乙基甲基丙烯酸酯)-明胶水凝胶致动器。

Hofmeister Effect Mediated Strong PHEMA-Gelatin Hydrogel Actuator.

作者信息

Li Jian, Chee Heng Li, Chong Yi Ting, Chan Benjamin Qi Yu, Xue Kun, Lim Poh Chong, Loh Xian Jun, Wang FuKe

机构信息

Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.

Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province & Laboratory of Neurology, the First Affiliated Hospital, Hainan Medical University, Haikou 571199, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2022 May 16. doi: 10.1021/acsami.2c01922.

Abstract

Hydrogels have become popular in biomedical applications, but their applications in muscle and tendon-like bioactuators have been hindered by low toughness and elastic modulus. Recently, a significant toughness enhancement of a single hydrogel network has been successfully achieved by the Hofmeister effect. However, little has been conducted for the Hofmeister effect on the hybrid hydrogels, although they have a special network structure consisting of two types of polymer components. Herein we fabricated hybrid poly(2-hydroxyethyl methacrylate) (PHEMA)-gelatin hydrogels with high mechanical performance and stimuli response. An ideal bicontinuous phase separation structure of the PHEMA (rigid) and gelatin (ductile) was observed with embedded microdisc-like gelatin in the three-dimensional polymeric network of PHEMA. A significant enhancement of mechanical performance by the Hofmeister effect was attributed to the salting-out-induced stronger and closer interphase interaction between PHEMA and gelatin. A superior comprehensive mechanical performance with fracture elongation over 650%, tensile strength of 5.2 MPa, toughness of 13.5 MJ/m, and modulus of 45.6 MPa was achieved with the salting-out effect. More specifically, the synergy of phase separation and Hofmeister effect enable the hydrogel to contract with an enhanced modulus in high-concentration salt solutions, while the same hydrogel swells and relaxes in dilute solutions, exhibiting an ionic stimulus response and excellent shape-memory properties like those of most artificial muscle. This is manifested in highly stretched, twisted, and knotted hydrogel strips that can rapidly recover their original shape in a dilute salt solution. The high strength and modulus, ionic stimuli response, and shape memory property make the hybrid hydrogel a promising material for bioactuators in various biomedical applications.

摘要

水凝胶在生物医学应用中已变得很流行,但其在肌肉和肌腱样生物致动器中的应用却因低韧性和弹性模量而受到阻碍。最近,通过霍夫迈斯特效应已成功实现了单一水凝胶网络韧性的显著增强。然而,尽管混合水凝胶具有由两种聚合物成分组成的特殊网络结构,但关于霍夫迈斯特效应在混合水凝胶上的研究却很少。在此,我们制备了具有高机械性能和刺激响应的聚甲基丙烯酸2-羟乙酯(PHEMA)-明胶混合水凝胶。在PHEMA的三维聚合物网络中观察到了PHEMA(刚性)和明胶(韧性)的理想双连续相分离结构,其中嵌入了微盘状明胶。霍夫迈斯特效应导致的机械性能显著增强归因于盐析诱导的PHEMA与明胶之间更强且更紧密的相间相互作用。通过盐析效应实现了卓越的综合机械性能,断裂伸长率超过650%,拉伸强度为5.2 MPa,韧性为13.5 MJ/m³,模量为45.6 MPa。更具体地说,相分离和霍夫迈斯特效应的协同作用使水凝胶在高浓度盐溶液中收缩并模量增强,而在稀溶液中膨胀并松弛,表现出离子刺激响应以及与大多数人造肌肉类似的优异形状记忆性能。这体现在高度拉伸、扭曲和打结的水凝胶条带在稀盐溶液中能迅速恢复其原始形状。高强度、模量、离子刺激响应和形状记忆性能使这种混合水凝胶成为各种生物医学应用中生物致动器的有前途的材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验