Suppr超能文献

CovMediScanX:一种用于 COVID-19 诊断的医学影像解决方案,基于胸部 X 光图像。

CovMediScanX: A medical imaging solution for COVID-19 diagnosis from chest X-ray images.

机构信息

Department of Computing and Electronics Engineering, Middle East College, Sultanate of Oman.

Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, United Arab Emirates.

出版信息

J Med Imaging Radiat Sci. 2024 Jun;55(2):272-280. doi: 10.1016/j.jmir.2024.03.046. Epub 2024 Apr 8.

Abstract

INTRODUCTION

Radiologists have extensively employed the interpretation of chest X-rays (CXR) to identify visual markers indicative of COVID-19 infection, offering an alternative approach for the screening of infected individuals. This research article presents CovMediScanX, a deep learning-based framework designed for a rapid and automated diagnosis of COVID-19 from CXR scan images.

METHODS

The proposed approach encompasses gathering and preprocessing CXR image datasets, training deep learning-based custom-made Convolutional Neural Network (CNN), pre-trained and hybrid transfer learning models, identifying the highest-performing model based on key evaluation metrics, and embedding this model into a web interface called CovMediScanX, designed for radiologists to detect the COVID-19 status in new CXR images.

RESULTS

The custom-made CNN model obtained a remarkable testing accuracy of 94.32% outperforming other models. CovMediScanX, employing the custom-made CNN underwent evaluation with an independent dataset also. The images in the independent dataset are sourced from a scanning machine that is entirely different from those used for the training dataset, highlighting a clear distinction of datasets in their origins. The evaluation outcome highlighted the framework's capability to accurately detect COVID-19 cases, showcasing encouraging results with a precision of 73% and a recall of 84% for positive cases. However, the model requires further enhancement, particularly in improving its detection of normal cases, as evidenced by lower precision and recall rates.

CONCLUSION

The research proposes CovMediScanX framework that demonstrates promising potential in automatically identifying COVID-19 cases from CXR images. While the model's overall performance on independent data needs improvement, it is evident that addressing bias through the inclusion of diverse data sources during training could further enhance accuracy and reliability.

摘要

介绍

放射科医生广泛利用胸部 X 光(CXR)的解读来识别 COVID-19 感染的视觉标志物,为感染者的筛查提供了另一种方法。本研究文章介绍了基于深度学习的 CovMediScanX 框架,用于从 CXR 扫描图像中快速自动诊断 COVID-19。

方法

该方法包括收集和预处理 CXR 图像数据集、训练基于深度学习的定制卷积神经网络(CNN)、预训练和混合迁移学习模型、根据关键评估指标确定表现最佳的模型,并将该模型嵌入一个名为 CovMediScanX 的网络界面,供放射科医生用于检测新 CXR 图像中的 COVID-19 状态。

结果

定制的 CNN 模型在测试中获得了出色的 94.32%准确率,优于其他模型。CovMediScanX 还使用定制的 CNN 对独立数据集进行了评估。独立数据集的图像来自与训练数据集完全不同的扫描机,突出了数据集在来源上的明显区别。评估结果突出了该框架准确检测 COVID-19 病例的能力,展示了令人鼓舞的结果,阳性病例的准确率为 73%,召回率为 84%。然而,该模型需要进一步改进,特别是在提高其对正常病例的检测能力方面,因为其准确率和召回率较低。

结论

该研究提出了 CovMediScanX 框架,该框架在自动从 CXR 图像中识别 COVID-19 病例方面具有很大的潜力。虽然该模型在独立数据上的整体性能需要改进,但通过在训练过程中纳入多样化的数据源来解决偏差问题,可以进一步提高准确性和可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验