利用一种动态卷积神经网络改进方法对 COVID-19 胸部 X 射线和 CT 图像进行分类。
Classification of COVID-19 chest X-Ray and CT images using a type of dynamic CNN modification method.
机构信息
Department of Engineering, King's College London, Strand, London, WC2R 2LS, United Kingdom.
出版信息
Comput Biol Med. 2021 Jul;134:104425. doi: 10.1016/j.compbiomed.2021.104425. Epub 2021 Apr 29.
Understanding and classifying Chest X-Ray (CXR) and computerised tomography (CT) images are of great significance for COVID-19 diagnosis. The existing research on the classification for COVID-19 cases faces the challenges of data imbalance, insufficient generalisability, the lack of comparative study, etc. To address these problems, this paper proposes a type of modified MobileNet to classify COVID-19 CXR images and a modified ResNet architecture for CT image classification. In particular, a modification method of convolutional neural networks (CNN) is designed to solve the gradient vanishing problem and improve the classification performance through dynamically combining features in different layers of a CNN. The modified MobileNet is applied to the classification of COVID-19, Tuberculosis, viral pneumonia (with the exception of COVID-19), bacterial pneumonia and normal controls using CXR images. Also, the proposed modified ResNet is used for the classification of COVID-19, non-COVID-19 infections and normal controls using CT images. The results show that the proposed methods achieve 99.6% test accuracy on the five-category CXR image dataset and 99.3% test accuracy on the CT image dataset. Six advanced CNN architectures and two specific COVID-19 detection models, i.e., COVID-Net and COVIDNet-CT are used in comparative studies. Two benchmark datasets and a CXR image dataset which combines eight different CXR image sources are employed to evaluate the performance of the above models. The results show that the proposed methods outperform the comparative models in classification accuracy, sensitivity, and precision, which demonstrate their potential in computer-aided diagnosis for healthcare applications.
理解和分类 chest X-ray(CXR)和计算机断层扫描(CT)图像对于 COVID-19 的诊断具有重要意义。现有的 COVID-19 病例分类研究面临数据不平衡、可泛化性不足、缺乏对比研究等挑战。为了解决这些问题,本文提出了一种改进的 MobileNet 用于 COVID-19 的 CXR 图像分类和一种改进的 ResNet 架构用于 CT 图像分类。特别是,设计了一种卷积神经网络(CNN)的改进方法,通过动态组合 CNN 不同层的特征来解决梯度消失问题并提高分类性能。改进的 MobileNet 用于使用 CXR 图像对 COVID-19、肺结核、病毒性肺炎(COVID-19 除外)、细菌性肺炎和正常对照进行分类。此外,所提出的改进的 ResNet 用于使用 CT 图像对 COVID-19、非 COVID-19 感染和正常对照进行分类。结果表明,所提出的方法在五类 CXR 图像数据集上的测试准确率达到 99.6%,在 CT 图像数据集上的测试准确率达到 99.3%。在对比研究中使用了六种先进的 CNN 架构和两种特定的 COVID-19 检测模型,即 COVID-Net 和 COVIDNet-CT。使用了两个基准数据集和一个结合了八种不同 CXR 图像源的 CXR 图像数据集来评估上述模型的性能。结果表明,所提出的方法在分类准确率、敏感性和精度方面优于对比模型,这表明它们在医疗保健应用的计算机辅助诊断方面具有潜力。