Suppr超能文献

利用预处理算法提高卷积神经网络预测胸部 X 光图像中 COVID-19 可能性的性能。

Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms.

机构信息

School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA.

School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA.

出版信息

Int J Med Inform. 2020 Dec;144:104284. doi: 10.1016/j.ijmedinf.2020.104284. Epub 2020 Sep 23.

Abstract

OBJECTIVE

This study aims to develop and test a new computer-aided diagnosis (CAD) scheme of chest X-ray images to detect coronavirus (COVID-19) infected pneumonia.

METHOD

CAD scheme first applies two image preprocessing steps to remove the majority of diaphragm regions, process the original image using a histogram equalization algorithm, and a bilateral low-pass filter. Then, the original image and two filtered images are used to form a pseudo color image. This image is fed into three input channels of a transfer learning-based convolutional neural network (CNN) model to classify chest X-ray images into 3 classes of COVID-19 infected pneumonia, other community-acquired no-COVID-19 infected pneumonia, and normal (non-pneumonia) cases. To build and test the CNN model, a publicly available dataset involving 8474 chest X-ray images is used, which includes 415, 5179 and 2,880 cases in three classes, respectively. Dataset is randomly divided into 3 subsets namely, training, validation, and testing with respect to the same frequency of cases in each class to train and test the CNN model.

RESULTS

The CNN-based CAD scheme yields an overall accuracy of 94.5 % (2404/2544) with a 95 % confidence interval of [0.93,0.96] in classifying 3 classes. CAD also yields 98.4 % sensitivity (124/126) and 98.0 % specificity (2371/2418) in classifying cases with and without COVID-19 infection. However, without using two preprocessing steps, CAD yields a lower classification accuracy of 88.0 % (2239/2544).

CONCLUSION

This study demonstrates that adding two image preprocessing steps and generating a pseudo color image plays an important role in developing a deep learning CAD scheme of chest X-ray images to improve accuracy in detecting COVID-19 infected pneumonia.

摘要

目的

本研究旨在开发和测试一种新的计算机辅助诊断(CAD)方案,以检测胸部 X 光图像中的冠状病毒(COVID-19)感染性肺炎。

方法

CAD 方案首先应用两个图像预处理步骤去除大部分横膈膜区域,使用直方图均衡化算法和双边低通滤波器处理原始图像。然后,将原始图像和两个滤波图像组合成伪彩色图像。将该图像输入基于迁移学习的卷积神经网络(CNN)模型的三个输入通道,将胸部 X 光图像分为 COVID-19 感染性肺炎、其他社区获得性非 COVID-19 感染性肺炎和正常(非肺炎)三种类型。为了构建和测试 CNN 模型,使用了一个公开的数据集,该数据集包含 8474 张胸部 X 光图像,分别有 415、5179 和 2880 例属于三个类别。数据集按照每个类别的病例频率随机分为训练、验证和测试三个子集,用于训练和测试 CNN 模型。

结果

基于 CNN 的 CAD 方案在对三个类别的分类中,整体准确率为 94.5%(2404/2544),95%置信区间为[0.93,0.96]。CAD 方案在分类有无 COVID-19 感染的病例时,灵敏度为 98.4%(124/126),特异性为 98.0%(2371/2418)。但是,如果不使用两个预处理步骤,CAD 的分类准确率则会降低至 88.0%(2239/2544)。

结论

本研究表明,添加两个图像预处理步骤并生成伪彩色图像在开发胸部 X 光图像深度学习 CAD 方案以提高 COVID-19 感染性肺炎检测准确性方面发挥了重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d11/7510591/b6acb44005ca/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验