文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于增强肿瘤化学免疫治疗的酸性/缺氧双缓解纳米调节剂

Acidic/hypoxia dual-alleviated nanoregulators for enhanced treatment of tumor chemo-immunotherapy.

作者信息

Guo Xiaoju, Chen Xiaoxiao, Ding Jiayi, Zhang Feng, Chen Shunyang, Hu Xin, Fang Shiji, Shen Lin, Lu Chenying, Zhao Zhongwei, Tu Jianfei, Shu Gaofeng, Chen Minjiang, Ji Jiansong

机构信息

Lishui Central Hospital, Shaoxing University, Shaoxing 312000, China.

Zhejiang Key Laboratory of Imaging and Interventional Medicine, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China.

出版信息

Asian J Pharm Sci. 2024 Apr;19(2):100905. doi: 10.1016/j.ajps.2024.100905. Epub 2024 Mar 16.


DOI:10.1016/j.ajps.2024.100905
PMID:38595332
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11002573/
Abstract

Chemotherapy plays a crucial role in triple-negative breast cancer (TNBC) treatment as it not only directly kills cancer cells but also induces immunogenic cell death. However, the chemotherapeutic efficacy was strongly restricted by the acidic and hypoxic tumor environment. Herein, we have successfully formulated PLGA-based nanoparticles concurrently loaded with doxorubicin (DOX), hemoglobin (Hb) and CaCO by a CaCO-assisted emulsion method, aiming at the effective treatment of TNBC. We found that the obtained nanomedicine (DHCaNPs) exhibited effective drug encapsulation and pH-responsive drug release behavior. Moreover, DHCaNPs demonstrated robust capabilities in neutralizing protons and oxygen transport. Consequently, DHCaNPs could not only serve as oxygen nanoshuttles to attenuate tumor hypoxia but also neutralize the acidic tumor microenvironment (TME) by depleting lactic acid, thereby effectively overcoming the resistance to chemotherapy. Furthermore, DHCaNPs demonstrated a notable ability to enhance antitumor immune responses by increasing the frequency of tumor-infiltrating effector lymphocytes and reducing the frequency of various immune-suppressive cells, therefore exhibiting a superior efficacy in suppressing tumor growth and metastasis when combined with anti-PD-L1 (αPD-L1) immunotherapy. In summary, this study highlights that DHCaNPs could effectively attenuate the acidic and hypoxic TME, offering a promising strategy to figure out an enhanced chemo-immunotherapy to benefit TNBC patients.

摘要

化疗在三阴性乳腺癌(TNBC)治疗中起着关键作用,因为它不仅能直接杀死癌细胞,还能诱导免疫原性细胞死亡。然而,化疗疗效受到酸性和缺氧肿瘤环境的强烈限制。在此,我们通过碳酸钙辅助乳化法成功制备了同时负载阿霉素(DOX)、血红蛋白(Hb)和碳酸钙的聚乳酸-羟基乙酸共聚物(PLGA)纳米颗粒,旨在有效治疗TNBC。我们发现,所获得的纳米药物(DHCaNPs)表现出有效的药物包封和pH响应性药物释放行为。此外,DHCaNPs在中和质子和氧气运输方面表现出强大的能力。因此,DHCaNPs不仅可以作为氧纳米穿梭体来减轻肿瘤缺氧,还可以通过消耗乳酸来中和酸性肿瘤微环境(TME),从而有效克服化疗耐药性。此外,DHCaNPs通过增加肿瘤浸润效应淋巴细胞的频率和降低各种免疫抑制细胞的频率,表现出显著的增强抗肿瘤免疫反应的能力,因此在与抗PD-L1(αPD-L1)免疫疗法联合使用时,在抑制肿瘤生长和转移方面表现出卓越的疗效。总之,本研究强调DHCaNPs可以有效减轻酸性和缺氧的TME,为探索增强的化学免疫疗法以造福TNBC患者提供了一种有前景的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275a/11002573/59ab30881d85/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275a/11002573/433a300d12da/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275a/11002573/c2ed956b10f5/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275a/11002573/5afd8b0b57c5/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275a/11002573/4e75845d53d6/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275a/11002573/2f9d3f179e64/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275a/11002573/f6090301b96e/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275a/11002573/180bfc7795ed/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275a/11002573/e7811cb320a7/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275a/11002573/59ab30881d85/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275a/11002573/433a300d12da/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275a/11002573/c2ed956b10f5/sc1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275a/11002573/5afd8b0b57c5/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275a/11002573/4e75845d53d6/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275a/11002573/2f9d3f179e64/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275a/11002573/f6090301b96e/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275a/11002573/180bfc7795ed/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275a/11002573/e7811cb320a7/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275a/11002573/59ab30881d85/gr7.jpg

相似文献

[1]
Acidic/hypoxia dual-alleviated nanoregulators for enhanced treatment of tumor chemo-immunotherapy.

Asian J Pharm Sci. 2024-4

[2]
CaCO-Assisted Preparation of pH-Responsive Immune-Modulating Nanoparticles for Augmented Chemo-Immunotherapy.

Nanomicro Lett. 2020-11-22

[3]
Potentiated Calcium Carbonate with Enhanced Calcium Overload Induction and Acid Neutralization Capabilities to Boost Chemoimmunotherapy against Liver Cancer.

ACS Nano. 2024-10-8

[4]
Charge reversal yolk-shell liposome co-loaded JQ1 and doxorubicin with high drug loading and optimal ratio for synergistically enhanced tumor chemo-immunotherapy via blockade PD-L1 pathway.

Int J Pharm. 2023-3-25

[5]
Chemical Modulation of Glucose Metabolism with a Fluorinated CaCO Nanoregulator Can Potentiate Radiotherapy by Programming Antitumor Immunity.

ACS Nano. 2022-9-27

[6]
Multifunctional Nanoplatform-Mediated Chemo-Photothermal Therapy Combines Immunogenic Cell Death with Checkpoint Blockade to Combat Triple-Negative Breast Cancer and Distant Metastasis.

Int J Nanomedicine. 2023

[7]
Enhanced Therapeutic Efficacy of Combining Losartan and Chemo-Immunotherapy for Triple Negative Breast Cancer.

Front Immunol. 2022

[8]
Tumor Microenvironment Modulating CaCO -Based Colloidosomal Microreactors Can Generally Reinforce Cancer Immunotherapy.

Adv Mater. 2024-3

[9]
TGF-β inhibition combined with cytotoxic nanomedicine normalizes triple negative breast cancer microenvironment towards anti-tumor immunity.

Theranostics. 2020

[10]
Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy.

Acta Biomater. 2017-11-10

引用本文的文献

[1]
Recent advances of anti-tumor nano-strategies via overturning pH gradient: alkalization and acidification.

J Nanobiotechnology. 2025-1-24

本文引用的文献

[1]
Challenges and Opportunities in Developing Targeted Therapies for Triple Negative Breast Cancer.

Biomolecules. 2023-8-1

[2]
Positive Chemotaxis of CREKA-Modified Ceria@Polydopamine Biomimetic Nanoswimmers for Enhanced Penetration and Chemo-photothermal Tumor Therapy.

ACS Nano. 2023-9-12

[3]
Phytoestrogen-derived multifunctional ligands for targeted therapy of breast cancer.

Asian J Pharm Sci. 2023-7

[4]
Triple Negative Breast Cancer Treatment Options and Limitations: Future Outlook.

Pharmaceutics. 2023-6-23

[5]
Recent advances in overcoming barriers to cell-based delivery systems for cancer immunotherapy.

Exploration (Beijing). 2022-3-15

[6]
Tumor microenvironment-responsive artesunate loaded Z-scheme heterostructures for synergistic photo-chemodynamic therapy of hypoxic tumor.

Asian J Pharm Sci. 2023-5

[7]
Monodisperse CaCO-loaded gelatin microspheres for reversing lactic acid-induced chemotherapy resistance during TACE treatment.

Int J Biol Macromol. 2023-3-15

[8]
Breast Cancer Statistics, 2022.

CA Cancer J Clin. 2022-11

[9]
Elaborately engineering of a dual-drug co-assembled nanomedicine for boosting immunogenic cell death and enhancing triple negative breast cancer treatment.

Asian J Pharm Sci. 2022-5

[10]
Emerging pro-drug and nano-drug strategies for gemcitabine-based cancer therapy.

Asian J Pharm Sci. 2022-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索