Suppr超能文献

腹侧视觉通路中预期输入的感觉表征减弱。

Dampened sensory representations for expected input across the ventral visual stream.

作者信息

Richter David, Heilbron Micha, de Lange Floris P

机构信息

Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6500 HB Nijmegen, The Netherlands.

Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands.

出版信息

Oxf Open Neurosci. 2022 Aug 15;1:kvac013. doi: 10.1093/oons/kvac013. eCollection 2022.

Abstract

Expectations, derived from previous experience, can help in making perception faster, more reliable and informative. A key neural signature of perceptual expectations is expectation suppression, an attenuated neural response to expected compared with unexpected stimuli. While expectation suppression has been reported using a variety of paradigms and recording methods, it remains unclear what neural modulation underlies this response attenuation. Sharpening models propose that neural populations tuned away from an expected stimulus are particularly suppressed by expectations, thereby resulting in an attenuated, but sharper population response. In contrast, dampening models suggest that neural populations tuned toward the expected stimulus are most suppressed, thus resulting in a dampened, less redundant population response. Empirical support is divided, with some studies favoring sharpening, while others support dampening. A key limitation of previous neuroimaging studies is the ability to draw inferences about neural-level modulations based on population (e.g. voxel) level signals. Indeed, recent simulations of repetition suppression showed that opposite neural modulations can lead to comparable population-level modulations. Forward models provide one solution to this inference limitation. Here, we used forward models to implement sharpening and dampening models, mapping neural modulations to voxel-level data. We show that a feature-specific gain modulation, suppressing neurons tuned toward the expected stimulus, best explains the empirical fMRI data. Thus, our results support the dampening account of expectation suppression, suggesting that expectations reduce redundancy in sensory cortex, and thereby promote updating of internal models on the basis of surprising information.

摘要

基于以往经验产生的预期,有助于使感知更快、更可靠且更具信息性。感知预期的一个关键神经特征是预期抑制,即与意外刺激相比,对预期刺激的神经反应减弱。虽然已经使用各种范式和记录方法报道了预期抑制,但尚不清楚这种反应减弱背后的神经调制是什么。锐化模型提出,远离预期刺激调谐的神经群体尤其会受到预期的抑制,从而导致群体反应减弱但更尖锐。相比之下,衰减模型表明,调谐到预期刺激的神经群体受到的抑制最大,从而导致群体反应衰减且冗余度降低。实证支持存在分歧,一些研究支持锐化,而另一些研究支持衰减。以往神经成像研究的一个关键局限在于,无法基于群体(例如体素)水平信号推断神经水平的调制。事实上,最近关于重复抑制的模拟表明,相反的神经调制可导致相当的群体水平调制。前向模型为这一推断局限提供了一种解决方案。在这里,我们使用前向模型来实现锐化和衰减模型,将神经调制映射到体素水平数据。我们表明,一种抑制调谐到预期刺激的神经元的特征特异性增益调制,最能解释功能性磁共振成像的实证数据。因此,我们的结果支持预期抑制的衰减观点,表明预期减少了感觉皮层中的冗余,从而促进基于意外信息更新内部模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c40/10939312/cb8b1e2e83cd/kvac013f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验