Hansen Andi H, Pauler Florian M, Riedl Michael, Streicher Carmen, Heger Anna, Laukoter Susanne, Sommer Christoph, Nicolas Armel, Hof Björn, Tsai Li Huei, Rülicke Thomas, Hippenmeyer Simon
Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA.
Oxf Open Neurosci. 2022 Jul 7;1:kvac009. doi: 10.1093/oons/kvac009. eCollection 2022.
The mammalian neocortex is composed of diverse neuronal and glial cell classes that broadly arrange in six distinct laminae. Cortical layers emerge during development and defects in the developmental programs that orchestrate cortical lamination are associated with neurodevelopmental diseases. The developmental principle of cortical layer formation depends on concerted radial projection neuron migration, from their birthplace to their final target position. Radial migration occurs in defined sequential steps, regulated by a large array of signaling pathways. However, based on genetic loss-of-function experiments, most studies have thus far focused on the role of cell-autonomous gene function. Yet, cortical neuron migration is a complex process and migrating neurons traverse along diverse cellular compartments and environments. The role of tissue-wide properties and genetic state in radial neuron migration is however not clear. Here we utilized mosaic analysis with double markers (MADM) technology to either sparsely or globally delete gene function, followed by quantitative single-cell phenotyping. The MADM-based gene ablation paradigms in combination with computational modeling demonstrated that global tissue-wide effects predominate cell-autonomous gene function albeit in a gene-specific manner. Our results thus suggest that the genetic landscape in a tissue critically affects the overall migration phenotype of individual cortical projection neurons. In a broader context, our findings imply that global tissue-wide effects represent an essential component of the underlying etiology associated with focal malformations of cortical development in particular, and neurological diseases in general.
哺乳动物新皮层由多种神经元和神经胶质细胞类型组成,这些细胞大致排列成六个不同的层。皮层层在发育过程中形成,协调皮层分层的发育程序中的缺陷与神经发育疾病有关。皮层层形成的发育原理取决于协调一致的径向投射神经元迁移,从它们的出生地到最终目标位置。径向迁移按确定的顺序步骤发生,受大量信号通路调节。然而,基于基因功能缺失实验,迄今为止大多数研究都集中在细胞自主基因功能的作用上。然而,皮层神经元迁移是一个复杂的过程,迁移的神经元会穿过不同的细胞区室和环境。组织范围的特性和基因状态在径向神经元迁移中的作用尚不清楚。在这里,我们利用双标记镶嵌分析(MADM)技术来稀疏或全局删除基因功能,然后进行定量单细胞表型分析。基于MADM的基因消融范式与计算建模相结合表明,尽管以基因特异性方式,但全局组织范围的效应在细胞自主基因功能中占主导地位。因此,我们的结果表明,组织中的基因格局严重影响单个皮层投射神经元的整体迁移表型。在更广泛的背景下,我们的研究结果意味着全局组织范围的效应是与特别是皮层发育局灶性畸形以及一般神经疾病相关的潜在病因的重要组成部分。