Chengdu Vocational& Technical College of Industry, Chengdu, China.
Railway Research Center, University of Waterloo, Waterloo, Canada.
PLoS One. 2024 Apr 10;19(4):e0301762. doi: 10.1371/journal.pone.0301762. eCollection 2024.
This paper focuses on optimizing the management of delayed trains in operational scenarios by scientifically categorizing train delay levels. It employs static and dynamic models grounded in real-world train delay data from high-speed railways. This classification aids dispatchers in swiftly identifying and predicting delay extents, thus enhancing mitigation strategies' efficiency. Key indicators, encompassing initial delay duration, station impacts, average station delay, delayed trains' cascading effects, and average delay per affected train, inform the classification. Applying the K-means clustering algorithm to standardized delay indicators yields an optimized categorization of delayed trains into four levels, reflecting varying risk levels. This static classification offers a comprehensive overview of delay dynamics. Furthermore, utilizing Markov chains, the study delves into sequential dynamic analyses, accounting for China's railway context and specifically addressing fluctuations during the Spring Festival travel rush. This research, combining static and dynamic approaches, provides valuable insights for bolstering railway operational efficiency and resilience amidst diverse delay scenarios.
本文聚焦于通过科学分类火车延误级别来优化运营场景下的晚点列车管理。它运用了基于高速铁路实际晚点数据的静态和动态模型。这种分类有助于调度员快速识别和预测延误程度,从而提高缓解策略的效率。关键指标包括初始延误持续时间、车站影响、平均车站延误、晚点列车的级联效应以及受影响列车的平均延误,为分类提供了信息。应用 K-均值聚类算法对标准化的延误指标进行聚类,将晚点列车优化分类为四个级别,反映了不同的风险级别。这种静态分类提供了延误动态的全面概述。此外,该研究还利用马尔可夫链深入分析了顺序动态,考虑了中国铁路的具体情况,专门解决了春运期间的波动问题。这种结合静态和动态方法的研究为增强铁路运营效率和应对各种延误场景的恢复力提供了有价值的见解。