The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si, 11160, Gyeonggi-Do, Republic of Korea.
Biochem Biophys Res Commun. 2024 May 28;710:149898. doi: 10.1016/j.bbrc.2024.149898. Epub 2024 Apr 5.
Type II toxin-antitoxin (TA) systems are ubiquitously distributed genetic elements in prokaryotes and are crucial for cell maintenance and survival under environmental stresses. The antitoxin is a modular protein consisting of the disordered C-terminal region that physically contacts and neutralizes the cognate toxin and the well-folded N-terminal DNA binding domain responsible for autorepression of TA transcription. However, how the two functional domains communicate is largely unknown. Herein, we determined the crystal structure of the N-terminal domain of the type II antitoxin MazE-mt10 from Mycobacterium tuberculosis, revealing a homodimer of the ribbon-helix-helix (RHH) fold with distinct DNA binding specificity. NMR studies demonstrated that full-length MazE-mt10 forms the helical and coiled states in equilibrium within the C-terminal region, and that helical propensity is allosterically enhanced by the N-terminal binding to the cognate operator DNA. This coil-to-helix transition may promote toxin binding/neutralization of MazE-mt10 and further stabilize the TA-DNA transcription repressor. This is supported by many crystal structures of type II TA complexes in which antitoxins form an α-helical structure at the TA interface. The hidden helical state of free MazE-mt10 in solution, favored by DNA binding, adds a new dimension to the regulatory mechanism of type II TA systems. Furthermore, complementary approaches using X-ray crystallography and NMR allow us to study the allosteric interdomain interplay of many other full-length antitoxins of type II TA systems.
II 型毒素-抗毒素(TA)系统是原核生物中广泛分布的遗传元件,对于细胞在环境压力下的维持和生存至关重要。抗毒素是一种模块化蛋白质,由无序的 C 端区域组成,该区域与同源毒素物理接触并中和其毒性,以及折叠良好的 N 端 DNA 结合域负责 TA 转录的自身抑制。然而,这两个功能域如何进行通讯在很大程度上是未知的。在此,我们确定了结核分枝杆菌 II 型抗毒素 MazE-mt10 的 N 端结构域的晶体结构,揭示了具有独特 DNA 结合特异性的 ribbon-helix-helix(RHH)折叠的同源二聚体。NMR 研究表明,全长 MazE-mt10 在 C 端区域内以平衡状态形成螺旋和卷曲状态,并且 N 端与同源操纵子 DNA 的结合会增强螺旋倾向的变构效应。这种卷曲到螺旋的转变可能促进 MazE-mt10 与毒素的结合/中和,并进一步稳定 TA-DNA 转录抑制剂。这得到了许多 II 型 TA 复合物的晶体结构的支持,其中抗毒素在 TA 界面形成α-螺旋结构。在溶液中自由 MazE-mt10 的隐藏螺旋状态,有利于 DNA 结合,为 II 型 TA 系统的调控机制增加了一个新的维度。此外,使用 X 射线晶体学和 NMR 的互补方法使我们能够研究许多其他 II 型 TA 系统全长抗毒素的变构域间相互作用。