Health Informatics Institute, University of South Florida, Tampa, Florida, USA.
Stat Med. 2024 May 30;43(12):2452-2471. doi: 10.1002/sim.10079. Epub 2024 Apr 10.
Many longitudinal studies are designed to monitor participants for major events related to the progression of diseases. Data arising from such longitudinal studies are usually subject to interval censoring since the events are only known to occur between two monitoring visits. In this work, we propose a new method to handle interval-censored multistate data within a proportional hazards model framework where the hazard rate of events is modeled by a nonparametric function of time and the covariates affect the hazard rate proportionally. The main idea of this method is to simplify the likelihood functions of a discrete-time multistate model through an approximation and the application of data augmentation techniques, where the assumed presence of censored information facilitates a simpler parameterization. Then the expectation-maximization algorithm is used to estimate the parameters in the model. The performance of the proposed method is evaluated by numerical studies. Finally, the method is employed to analyze a dataset on tracking the advancement of coronary allograft vasculopathy following heart transplantation.
许多纵向研究旨在监测与疾病进展相关的重大事件的参与者。由于事件仅在两次监测访问之间发生,因此此类纵向研究产生的数据通常受到区间 censoring 的限制。在这项工作中,我们提出了一种新的方法,在比例风险模型框架内处理区间 censored 多状态数据,其中事件的风险率通过时间的非参数函数建模,并且协变量按比例影响风险率。该方法的主要思想是通过近似和数据增强技术简化离散时间多状态模型的似然函数,其中假定存在 censored 信息可简化参数化。然后使用期望最大化算法估计模型中的参数。通过数值研究评估所提出方法的性能。最后,该方法用于分析一组关于跟踪心脏移植后冠状动脉同种异体血管病进展的数据集。