Suppr超能文献

一种用于建模区间删失多状态数据的离散逼近方法。

A discrete approximation method for modeling interval-censored multistate data.

机构信息

Health Informatics Institute, University of South Florida, Tampa, Florida, USA.

出版信息

Stat Med. 2024 May 30;43(12):2452-2471. doi: 10.1002/sim.10079. Epub 2024 Apr 10.

Abstract

Many longitudinal studies are designed to monitor participants for major events related to the progression of diseases. Data arising from such longitudinal studies are usually subject to interval censoring since the events are only known to occur between two monitoring visits. In this work, we propose a new method to handle interval-censored multistate data within a proportional hazards model framework where the hazard rate of events is modeled by a nonparametric function of time and the covariates affect the hazard rate proportionally. The main idea of this method is to simplify the likelihood functions of a discrete-time multistate model through an approximation and the application of data augmentation techniques, where the assumed presence of censored information facilitates a simpler parameterization. Then the expectation-maximization algorithm is used to estimate the parameters in the model. The performance of the proposed method is evaluated by numerical studies. Finally, the method is employed to analyze a dataset on tracking the advancement of coronary allograft vasculopathy following heart transplantation.

摘要

许多纵向研究旨在监测与疾病进展相关的重大事件的参与者。由于事件仅在两次监测访问之间发生,因此此类纵向研究产生的数据通常受到区间 censoring 的限制。在这项工作中,我们提出了一种新的方法,在比例风险模型框架内处理区间 censored 多状态数据,其中事件的风险率通过时间的非参数函数建模,并且协变量按比例影响风险率。该方法的主要思想是通过近似和数据增强技术简化离散时间多状态模型的似然函数,其中假定存在 censored 信息可简化参数化。然后使用期望最大化算法估计模型中的参数。通过数值研究评估所提出方法的性能。最后,该方法用于分析一组关于跟踪心脏移植后冠状动脉同种异体血管病进展的数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2332/11109708/6f5ce78b8e9b/nihms-1984079-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验