Suppr超能文献

在动物模型中使用脑电图总能量作为颅内(和脑灌注)压力的无创追踪:一项初步研究。

Using EEG total energy as a noninvasively tracking of intracranial (and cerebral perfussion) pressure in an animal model: A pilot study.

作者信息

Pose Fernando, Videla Carlos, Campanini Giovanni, Ciarrocchi Nicolas, Redelico Francisco O

机构信息

Instituto de Medicina Translacional e Ingeniería Biomédica, CONICET-Hospital Italiano de Buenos Aires - Instituto Universitario del Hospital Italiano de Buenos Aires, Potosi 4265, Buenos Aires, C1199ACL, Argentina.

Servicio de Terapia Intensiva de Adultos, Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, Buenos Aires, C1199ACL, Argentina.

出版信息

Heliyon. 2024 Mar 26;10(7):e28544. doi: 10.1016/j.heliyon.2024.e28544. eCollection 2024 Apr 15.

Abstract

PURPOSE

This study aims to describe the total EEG energy during episodes of intracranial hypertension (IH) and evaluate its potential as a classification feature for IH.

NEW METHODS

We computed the sample correlation coefficient between intracranial pressure (ICP) and the total EEG energy. Additionally, a generalized additive model was employed to assess the relationship between arterial blood pressure (ABP), total EEG energy, and the odds of IH.

RESULTS

The median sample cross-correlation between total EEG energy and ICP was 0.7, and for cerebral perfusion pressure (CPP) was 0.55. Moreover, the proposed model exhibited an accuracy of 0.70, sensitivity of 0.53, specificity of 0.79, precision of 0.54, F1-score of 0.54, and an AUC of 0.7.

COMPARISON WITH EXISTING METHODS

The only existing comparable methods, up to our knowledge, use 13 variables as predictor of IH, our model uses only 3, our model, as it is an extension of the generalized model is interpretable and it achieves the same performance.

CONCLUSION

These findings hold promise for the advancement of multimodal monitoring systems in neurocritical care and the development of a non-invasive ICP monitoring tool, particularly in resource-constrained environments.

摘要

目的

本研究旨在描述颅内高压(IH)发作期间的脑电图总能量,并评估其作为IH分类特征的潜力。

新方法

我们计算了颅内压(ICP)与脑电图总能量之间的样本相关系数。此外,采用广义相加模型来评估动脉血压(ABP)、脑电图总能量与IH发生几率之间的关系。

结果

脑电图总能量与ICP之间的样本交叉相关中位数为0.7,与脑灌注压(CPP)之间为0.55。此外,所提出的模型准确率为0.70,灵敏度为0.53,特异性为0.79,精确率为0.54,F1分数为0.54,曲线下面积(AUC)为0.7。

与现有方法的比较

据我们所知,现有的唯一可比方法使用13个变量作为IH的预测指标,而我们的模型仅使用3个变量。我们的模型作为广义模型的扩展是可解释的,并且具有相同的性能。

结论

这些发现有望推动神经重症监护中多模态监测系统的发展以及无创ICP监测工具的开发,特别是在资源有限的环境中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2396/11004541/598e7a0f8cf3/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验